On continuous self-maps and homeomorphisms of the Golomb space
Taras O. Banakh; Jerzy Mioduszewski; Sławomir Turek
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 4, page 423-442
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., Mioduszewski, Jerzy, and Turek, Sławomir. "On continuous self-maps and homeomorphisms of the Golomb space." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 423-442. <http://eudml.org/doc/294865>.
@article{Banakh2018,
abstract = {The Golomb space $\{\mathbb \{N\}\}_\tau $ is the set $\{\mathbb \{N\}\}$ of positive integers endowed with the topology $\tau $ generated by the base consisting of arithmetic progressions $\lbrace a+ bn: n\ge 0\rbrace $ with coprime $a,b$. We prove that the Golomb space $\{\mathbb \{N\}\}_\tau $ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set $\Pi $ of prime numbers is a dense metrizable subspace of $\{\mathbb \{N\}\}_\tau $, and each homeomorphism $h$ of $\{\mathbb \{N\}\}_\tau $ has the following properties: $h(1)=1$, $h(\Pi )=\Pi $, $\Pi _\{h(x)\}=h(\Pi _x)$, and $h(x^\{\{\mathbb \{N\}\}\})=h(x)^\{\,\mathbb \{N\}\}$ for all $x\in \{\mathbb \{N\}\}$. Here $x^\{\mathbb \{N\}\}:=\lbrace x^n\colon n\in \{\mathbb \{N\}\}\rbrace $ and $\Pi _x$ denotes the set of prime divisors of $x$.},
author = {Banakh, Taras O., Mioduszewski, Jerzy, Turek, Sławomir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Golomb space; arithmetic progression; superconnected space; homeomorphism},
language = {eng},
number = {4},
pages = {423-442},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On continuous self-maps and homeomorphisms of the Golomb space},
url = {http://eudml.org/doc/294865},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Mioduszewski, Jerzy
AU - Turek, Sławomir
TI - On continuous self-maps and homeomorphisms of the Golomb space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 423
EP - 442
AB - The Golomb space ${\mathbb {N}}_\tau $ is the set ${\mathbb {N}}$ of positive integers endowed with the topology $\tau $ generated by the base consisting of arithmetic progressions $\lbrace a+ bn: n\ge 0\rbrace $ with coprime $a,b$. We prove that the Golomb space ${\mathbb {N}}_\tau $ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set $\Pi $ of prime numbers is a dense metrizable subspace of ${\mathbb {N}}_\tau $, and each homeomorphism $h$ of ${\mathbb {N}}_\tau $ has the following properties: $h(1)=1$, $h(\Pi )=\Pi $, $\Pi _{h(x)}=h(\Pi _x)$, and $h(x^{{\mathbb {N}}})=h(x)^{\,\mathbb {N}}$ for all $x\in {\mathbb {N}}$. Here $x^{\mathbb {N}}:=\lbrace x^n\colon n\in {\mathbb {N}}\rbrace $ and $\Pi _x$ denotes the set of prime divisors of $x$.
LA - eng
KW - Golomb space; arithmetic progression; superconnected space; homeomorphism
UR - http://eudml.org/doc/294865
ER -
References
top- Apostol T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York, 1976. MR0434929
- Artin E., Tate J., Class Field Theory, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, 1990. MR1043169
- Banakh T., Is the Golomb countable connected space topologically rigid?, available at https://mathoverflow.net/questions/285557.
- Banakh T., A simultaneous generalization of the Grunwald-Wang and Dirichlet theorems on primes, available at https://mathoverflow.net/questions/310130.
- Banakh T., Is the identity function a unique multiplicative homeomorphism of ?, available at https://mathoverflow.net/questions/310163.
- Brown M., A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), Abstract 423, 367.
- Clark P. L., Lebowitz-Lockard N., Pollack P., 10.2989/16073606.2018.1438533, Quaest. Math. published online, available at https://doi.org/10.2989/16073606.2018.1438533. DOI10.2989/16073606.2018.1438533
- Dirichlet P. G. L., 10.1090/hmath/016, History of Mathematics, 16, American Mathematical Society, Providence, London, 1999. MR1710911DOI10.1090/hmath/016
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Engelking R., Theory of Dimensions Finite and Infinite, Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002MR1363947
- Furstenberg H., 10.2307/2307043, Amer. Math. Monthly 62 (1955), 353. MR0068566DOI10.2307/2307043
- Gauss C. F., Disquisitiones Arithmeticae, Springer, New York, 1986. Zbl1167.11001
- Golomb S. W., 10.1080/00029890.1959.11989385, Amer. Math. Monthly 66 (1959), 663–665. MR0107622DOI10.1080/00029890.1959.11989385
- Golomb S. W., Arithmetica topologica, General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Praha (1962), 179–186. MR0154249
- Jones G. A., Jones J. M., Elementary Number Theory, Springer Undergraduate Mathematics Series, Springer, London, 1998. MR1610533
- Knaster B., Kuratowski K., 10.4064/fm-2-1-206-255, Fund. Math. 2 (1921), no. 1, 206–256 (French). DOI10.4064/fm-2-1-206-255
- Knopfmacher J., Porubský Š., Topologies related to arithmetical properties of integral domains, Exposition Math. 15 (1997), no. 2, 131–148. MR1458761
- Steen L. A., Seebach J. A., Jr., Counterexamples in Topology, Dover Publications, Mineola, 1995. Zbl0386.54001MR1382863
- Stevenhagen P., Lenstra H. W., Jr., 10.1007/BF03027290, Math. Intelligencer 18 (1996), no. 2, 26–37. MR1395088DOI10.1007/BF03027290
- Sury B., 10.1007/BF02839049, Resonance 8 (2003), no. 12, 33–41. DOI10.1007/BF02839049
- Szczuka P., The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math. 43 (2010), no. 4, 899–909. MR2761648
- Szczuka P., The Darboux property for polynomials in Golomb's and Kirch's topologies, Demonstratio Math. 46 (2013), no. 2, 429–435. MR3098036
- Wang S., 10.2307/1969410, Ann. of Math. (2) 49 (1948), 1008–1009. MR0026992DOI10.2307/1969410
Citations in EuDML Documents
top- Taras O. Banakh, Dario Spirito, Sławomir Turek, The Golomb space is topologically rigid
- José del Carmen Alberto-Domínguez, Gerardo Acosta, Gerardo Delgadillo-Piñón, Totally Brown subsets of the Golomb space and the Kirch space
- José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza, Aposyndesis in
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.