On continuous self-maps and homeomorphisms of the Golomb space

Taras O. Banakh; Jerzy Mioduszewski; Sławomir Turek

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 4, page 423-442
  • ISSN: 0010-2628

Abstract

top
The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set Π of prime numbers is a dense metrizable subspace of τ , and each homeomorphism h of τ has the following properties: h ( 1 ) = 1 , h ( Π ) = Π , Π h ( x ) = h ( Π x ) , and h ( x ) = h ( x ) for all x . Here x : = { x n : n } and Π x denotes the set of prime divisors of x .

How to cite

top

Banakh, Taras O., Mioduszewski, Jerzy, and Turek, Sławomir. "On continuous self-maps and homeomorphisms of the Golomb space." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 423-442. <http://eudml.org/doc/294865>.

@article{Banakh2018,
abstract = {The Golomb space $\{\mathbb \{N\}\}_\tau $ is the set $\{\mathbb \{N\}\}$ of positive integers endowed with the topology $\tau $ generated by the base consisting of arithmetic progressions $\lbrace a+ bn: n\ge 0\rbrace $ with coprime $a,b$. We prove that the Golomb space $\{\mathbb \{N\}\}_\tau $ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set $\Pi $ of prime numbers is a dense metrizable subspace of $\{\mathbb \{N\}\}_\tau $, and each homeomorphism $h$ of $\{\mathbb \{N\}\}_\tau $ has the following properties: $h(1)=1$, $h(\Pi )=\Pi $, $\Pi _\{h(x)\}=h(\Pi _x)$, and $h(x^\{\{\mathbb \{N\}\}\})=h(x)^\{\,\mathbb \{N\}\}$ for all $x\in \{\mathbb \{N\}\}$. Here $x^\{\mathbb \{N\}\}:=\lbrace x^n\colon n\in \{\mathbb \{N\}\}\rbrace $ and $\Pi _x$ denotes the set of prime divisors of $x$.},
author = {Banakh, Taras O., Mioduszewski, Jerzy, Turek, Sławomir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Golomb space; arithmetic progression; superconnected space; homeomorphism},
language = {eng},
number = {4},
pages = {423-442},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On continuous self-maps and homeomorphisms of the Golomb space},
url = {http://eudml.org/doc/294865},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Banakh, Taras O.
AU - Mioduszewski, Jerzy
AU - Turek, Sławomir
TI - On continuous self-maps and homeomorphisms of the Golomb space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 423
EP - 442
AB - The Golomb space ${\mathbb {N}}_\tau $ is the set ${\mathbb {N}}$ of positive integers endowed with the topology $\tau $ generated by the base consisting of arithmetic progressions $\lbrace a+ bn: n\ge 0\rbrace $ with coprime $a,b$. We prove that the Golomb space ${\mathbb {N}}_\tau $ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set $\Pi $ of prime numbers is a dense metrizable subspace of ${\mathbb {N}}_\tau $, and each homeomorphism $h$ of ${\mathbb {N}}_\tau $ has the following properties: $h(1)=1$, $h(\Pi )=\Pi $, $\Pi _{h(x)}=h(\Pi _x)$, and $h(x^{{\mathbb {N}}})=h(x)^{\,\mathbb {N}}$ for all $x\in {\mathbb {N}}$. Here $x^{\mathbb {N}}:=\lbrace x^n\colon n\in {\mathbb {N}}\rbrace $ and $\Pi _x$ denotes the set of prime divisors of $x$.
LA - eng
KW - Golomb space; arithmetic progression; superconnected space; homeomorphism
UR - http://eudml.org/doc/294865
ER -

References

top
  1. Apostol T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York, 1976. MR0434929
  2. Artin E., Tate J., Class Field Theory, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, 1990. MR1043169
  3. Banakh T., Is the Golomb countable connected space topologically rigid?, available at https://mathoverflow.net/questions/285557. 
  4. Banakh T., A simultaneous generalization of the Grunwald-Wang and Dirichlet theorems on primes, available at https://mathoverflow.net/questions/310130. 
  5. Banakh T., Is the identity function a unique multiplicative homeomorphism of ?, available at https://mathoverflow.net/questions/310163. 
  6. Brown M., A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), Abstract 423, 367. 
  7. Clark P. L., Lebowitz-Lockard N., Pollack P., 10.2989/16073606.2018.1438533, Quaest. Math. published online, available at https://doi.org/10.2989/16073606.2018.1438533. DOI10.2989/16073606.2018.1438533
  8. Dirichlet P. G. L., 10.1090/hmath/016, History of Mathematics, 16, American Mathematical Society, Providence, London, 1999. MR1710911DOI10.1090/hmath/016
  9. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  10. Engelking R., Theory of Dimensions Finite and Infinite, Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002MR1363947
  11. Furstenberg H., 10.2307/2307043, Amer. Math. Monthly 62 (1955), 353. MR0068566DOI10.2307/2307043
  12. Gauss C. F., Disquisitiones Arithmeticae, Springer, New York, 1986. Zbl1167.11001
  13. Golomb S. W., 10.1080/00029890.1959.11989385, Amer. Math. Monthly 66 (1959), 663–665. MR0107622DOI10.1080/00029890.1959.11989385
  14. Golomb S. W., Arithmetica topologica, General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Praha (1962), 179–186. MR0154249
  15. Jones G. A., Jones J. M., Elementary Number Theory, Springer Undergraduate Mathematics Series, Springer, London, 1998. MR1610533
  16. Knaster B., Kuratowski K., 10.4064/fm-2-1-206-255, Fund. Math. 2 (1921), no. 1, 206–256 (French). DOI10.4064/fm-2-1-206-255
  17. Knopfmacher J., Porubský Š., Topologies related to arithmetical properties of integral domains, Exposition Math. 15 (1997), no. 2, 131–148. MR1458761
  18. Steen L. A., Seebach J. A., Jr., Counterexamples in Topology, Dover Publications, Mineola, 1995. Zbl0386.54001MR1382863
  19. Stevenhagen P., Lenstra H. W., Jr., 10.1007/BF03027290, Math. Intelligencer 18 (1996), no. 2, 26–37. MR1395088DOI10.1007/BF03027290
  20. Sury B., 10.1007/BF02839049, Resonance 8 (2003), no. 12, 33–41. DOI10.1007/BF02839049
  21. Szczuka P., The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math. 43 (2010), no. 4, 899–909. MR2761648
  22. Szczuka P., The Darboux property for polynomials in Golomb's and Kirch's topologies, Demonstratio Math. 46 (2013), no. 2, 429–435. MR3098036
  23. Wang S., 10.2307/1969410, Ann. of Math. (2) 49 (1948), 1008–1009. MR0026992DOI10.2307/1969410

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.