The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures
Mathematica Bohemica (2021)
- Volume: 146, Issue: 3, page 235-249
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPresoto, Adilson Eduardo. "The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures." Mathematica Bohemica 146.3 (2021): 235-249. <http://eudml.org/doc/297571>.
@article{Presoto2021,
abstract = {We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation \[ -\Delta u + \{\rm e\}^u(\{\rm e\}^u-1) =\mu \quad \mbox\{in\}\ \Omega \]
with the Dirichlet boundary condition. Approximating $\mu $ by a sequence $(\mu _n)_\{n \in \mathbb \{N\}\}$ of $L^1$ functions or finite signed measures such that this equation has a solution $u_n$ for each $n\in \mathbb \{N\}$, we are interested in establishing the convergence of the sequence $(u_n)_\{n\in \mathbb \{N\}\}$ to a function $u^\{\#\}$ and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by $u^\{\#\}$.},
author = {Presoto, Adilson Eduardo},
journal = {Mathematica Bohemica},
keywords = {elliptic equation; exponential nonlinearity; scalar Chern-Simons equation; signed measure},
language = {eng},
number = {3},
pages = {235-249},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures},
url = {http://eudml.org/doc/297571},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Presoto, Adilson Eduardo
TI - The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 3
SP - 235
EP - 249
AB - We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation \[ -\Delta u + {\rm e}^u({\rm e}^u-1) =\mu \quad \mbox{in}\ \Omega \]
with the Dirichlet boundary condition. Approximating $\mu $ by a sequence $(\mu _n)_{n \in \mathbb {N}}$ of $L^1$ functions or finite signed measures such that this equation has a solution $u_n$ for each $n\in \mathbb {N}$, we are interested in establishing the convergence of the sequence $(u_n)_{n\in \mathbb {N}}$ to a function $u^{\#}$ and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by $u^{\#}$.
LA - eng
KW - elliptic equation; exponential nonlinearity; scalar Chern-Simons equation; signed measure
UR - http://eudml.org/doc/297571
ER -
References
top- Bartolucci, D., Leoni, F., Orsina, L., Ponce, A. C., 10.1016/j.anihpc.2004.12.003, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 799-815. (2005) Zbl1148.35318MR2172860DOI10.1016/j.anihpc.2004.12.003
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext, Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Brezis, H., Marcus, M., Ponce, A. C., 10.1515/9781400827794.55, Mathematical Aspects of Nonlinear Dispersive Equations Lectures of the CMI/IAS workshop on Mathematical aspects of nonlinear PDEs, Princeton, 2004. Ann. Math. Stud. 163. Princeton Univ. Press, Princeton 55-109 J. Bourgain et al. Zbl1151.35034MR2333208DOI10.1515/9781400827794.55
- Brezis, H., Merle, F., 10.1080/03605309108820797, Commun. Partial Differ. Equations 16 (1991), 1223-1253. (1991) Zbl0746.35006MR1132783DOI10.1080/03605309108820797
- Brezis, H., Strauss, W. A., 10.2969/jmsj/02540565, J. Math. Soc. Japan 25 (1973), 565-590. (1973) Zbl0278.35041MR0336050DOI10.2969/jmsj/02540565
- Evans, L. C., Gariepy, R. F., 10.1201/b18333, Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). (1992) Zbl0804.28001MR1158660DOI10.1201/b18333
- Lin, C.-S., Ponce, A. C., Yang, Y., 10.1016/j.jfa.2007.03.010, J. Funct. Anal. 247 (2007), 289-350. (2007) Zbl1206.35096MR2323438DOI10.1016/j.jfa.2007.03.010
- Marcus, M., Ponce, A. C., 10.1016/j.jfa.2009.09.007, J. Funct. Anal. 258 (2010), 2316-2372. (2010) Zbl1194.35483MR2584747DOI10.1016/j.jfa.2009.09.007
- Ponce, A. C., 10.4171/140, EMS Tracts in Mathematics 23. EMS, Zürich (2016). (2016) Zbl1357.35003MR3675703DOI10.4171/140
- Ponce, A. C., Presoto, A. E., 10.1016/j.na.2013.02.004, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 84 (2013), 91-102. (2013) Zbl1282.35395MR3034574DOI10.1016/j.na.2013.02.004
- Stampacchia, G., 10.5802/aif.204, Ann. Inst. Fourier 15 (1965), 189-257 French. (1965) Zbl0151.15401MR192177DOI10.5802/aif.204
- Vázquez, J. L., 10.1017/S0308210500012907, Proc. R. Soc. Edinb., Sect. A 95 (1983), 181-202. (1983) Zbl0536.35025MR726870DOI10.1017/S0308210500012907
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.