The direct and inverse problem for sub-diffusion equations with a generalized impedance subregion

Isaac Harris

Applications of Mathematics (2022)

  • Volume: 67, Issue: 1, page 1-20
  • ISSN: 0862-7940

Abstract

top
In this paper, we consider the direct and inverse problem for time-fractional diffusion in a domain with an impenetrable subregion. Here we assume that on the boundary of the subregion the solution satisfies a generalized impedance boundary condition. This boundary condition is given by a second order spatial differential operator imposed on the boundary. A generalized impedance boundary condition can be used to model corrosion and delimitation. The well-posedness for the direct problem is established where the Laplace transform is used to study the time dependent boundary value problem. The inverse impedance problem of determining the parameters from the Cauchy data is also studied provided the boundary of the subregion is known. The uniqueness of recovering the boundary parameters from the Neumann to Dirichlet mapping is proven.

How to cite

top

Harris, Isaac. "The direct and inverse problem for sub-diffusion equations with a generalized impedance subregion." Applications of Mathematics 67.1 (2022): 1-20. <http://eudml.org/doc/297574>.

@article{Harris2022,
abstract = {In this paper, we consider the direct and inverse problem for time-fractional diffusion in a domain with an impenetrable subregion. Here we assume that on the boundary of the subregion the solution satisfies a generalized impedance boundary condition. This boundary condition is given by a second order spatial differential operator imposed on the boundary. A generalized impedance boundary condition can be used to model corrosion and delimitation. The well-posedness for the direct problem is established where the Laplace transform is used to study the time dependent boundary value problem. The inverse impedance problem of determining the parameters from the Cauchy data is also studied provided the boundary of the subregion is known. The uniqueness of recovering the boundary parameters from the Neumann to Dirichlet mapping is proven.},
author = {Harris, Isaac},
journal = {Applications of Mathematics},
keywords = {fractional diffusion; Laplace transform; inverse impedance problem},
language = {eng},
number = {1},
pages = {1-20},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The direct and inverse problem for sub-diffusion equations with a generalized impedance subregion},
url = {http://eudml.org/doc/297574},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Harris, Isaac
TI - The direct and inverse problem for sub-diffusion equations with a generalized impedance subregion
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 1
EP - 20
AB - In this paper, we consider the direct and inverse problem for time-fractional diffusion in a domain with an impenetrable subregion. Here we assume that on the boundary of the subregion the solution satisfies a generalized impedance boundary condition. This boundary condition is given by a second order spatial differential operator imposed on the boundary. A generalized impedance boundary condition can be used to model corrosion and delimitation. The well-posedness for the direct problem is established where the Laplace transform is used to study the time dependent boundary value problem. The inverse impedance problem of determining the parameters from the Cauchy data is also studied provided the boundary of the subregion is known. The uniqueness of recovering the boundary parameters from the Neumann to Dirichlet mapping is proven.
LA - eng
KW - fractional diffusion; Laplace transform; inverse impedance problem
UR - http://eudml.org/doc/297574
ER -

References

top
  1. Boukari, Y., Haddar, H., 10.1088/0266-5611/31/3/035011, Inverse Probl. 31 (2015), Article ID 035011, 21 pages. (2015) Zbl1314.35023MR3319377DOI10.1088/0266-5611/31/3/035011
  2. Brown, T. S., Du, S., Eruslu, H., Sayas, F.-J., 10.21042/AMNS.2018.1.00006, Appl. Math. Nonlinear Sci. 3 (2018), 55-96. (2018) MR3893319DOI10.21042/AMNS.2018.1.00006
  3. Cakoni, F., Teresa, I. de, Haddar, H., Monk, P., 10.1137/16M1064167, SIAM J. Appl. Math. 76 (2016), 2306-2332. (2016) Zbl1362.35328MR3576580DOI10.1137/16M1064167
  4. Cakoni, F., Kress, R., 10.1088/0266-5611/29/1/015005, Inverse Probl. 29 (2013), Article ID 015005, 19 pages. (2013) Zbl1302.65146MR3003012DOI10.1088/0266-5611/29/1/015005
  5. Monk, F. Cakoni P., Selgas, V., 10.2140/apde.2021.14.667, Anal. PDE 14 (2021), 667-688. (2021) Zbl7365578MR4259870DOI10.2140/apde.2021.14.667
  6. Calderón, A.-P., On an inverse boundary value problem, Seminar on Numerical Analysis and Its Applications to Continuum Physics Soc. Brasil. Mat., Rio de Janeiro (1980), 65-73. (1980) MR0590275
  7. Chaabane, S., Charfi, B., Haddar, H., 10.1088/0266-5611/32/10/105004, Inverse Probl. 32 (2016), Article ID 105004, 22 pages. (2016) Zbl1354.65230MR3627028DOI10.1088/0266-5611/32/10/105004
  8. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). (2010) Zbl1194.35001MR2597943DOI10.1090/gsm/019
  9. Guo, J., Nakamura, G., Wang, H., The factorization method for recovering cavities in a heat conductor, Available at https://arxiv.org/abs/1912.11590 (2019), 15 pages. (2019) 
  10. Haddar, H., Lechleiter, A., Marmorat, S., 10.1080/00036811.2013.772583, Appl. Anal. 93 (2014), 369-390. (2014) Zbl1290.35169MR3169211DOI10.1080/00036811.2013.772583
  11. Harris, I., 10.1002/mma.5777, Math. Methods Appl. Sci. 42 (2019), 6741-6756. (2019) Zbl1437.35177MR4037932DOI10.1002/mma.5777
  12. Harris, I., 10.1080/00036811.2021.1991326, To appear in Appl. Anal. (2021), 19 pages. (2021) DOI10.1080/00036811.2021.1991326
  13. Ismailov, M. I., Çiçek, M., 10.1016/j.apm.2015.12.020, Appl. Math. Modelling 40 (2016), 4891-4899. (2016) Zbl1459.35395MR3478250DOI10.1016/j.apm.2015.12.020
  14. Jin, B., Rundell, W., 10.1088/0266-5611/31/3/035003, Inverse Probl. 31 (2015), Article ID 035003, 40 pages. (2015) Zbl1323.34027MR3311557DOI10.1088/0266-5611/31/3/035003
  15. Kaltenbacher, B., Rundell, W., 10.1088/1361-6420/ab109e, Inverse Probl. 35 (2019), Article ID 065004, 31 pages. (2019) Zbl1461.35233MR3975371DOI10.1088/1361-6420/ab109e
  16. Kaltenbacher, B., Rundell, W., 10.3934/ipi.2019020, Inverse Probl. Imaging 13 (2019), 401-430. (2019) Zbl1410.35285MR3925425DOI10.3934/ipi.2019020
  17. Kirsch, A., Grinberg, N., 10.1093/acprof:oso/9780199213535.001.0001, Oxford Lecture Series in Mathematics and Its Applications 36. Oxford University Press, Oxford (2008). (2008) Zbl1222.35001MR2378253DOI10.1093/acprof:oso/9780199213535.001.0001
  18. Mueller, J. F., Siltanen, S., 10.1137/1.9781611972344, Computational Science & Engineering 10. SIAM, Philadelphia (2012). (2012) Zbl1262.65124MR2986262DOI10.1137/1.9781611972344
  19. Podlubny, I., 10.1016/s0076-5392(99)x8001-5, Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022DOI10.1016/s0076-5392(99)x8001-5
  20. Qiu, T., Rieder, A., Sayas, F.-J., Zhang, S., 10.1007/s00211-019-01040-y, Numer. Math. 143 (2019), 223-259. (2019) Zbl1428.65102MR3987172DOI10.1007/s00211-019-01040-y
  21. Salsa, S., 10.1007/978-88-470-0752-9, Universitext. Springer, Berlin (2008). (2008) Zbl1146.35001MR2399851DOI10.1007/978-88-470-0752-9
  22. Sayas, F.-J., 10.1007/978-3-319-26645-9, Springer Series in Computational Mathematics 50. Springer, Cham (2016). (2016) Zbl1346.65047MR3468871DOI10.1007/978-3-319-26645-9
  23. Thach, T. N., Huy, T. N., Tam, P. T. M., Minh, M. N., Can, N. H., 10.1002/mma.5334, Math. Methods Appl. Sci. 42 (2019), 204-218. (2019) Zbl1407.35093MR3905782DOI10.1002/mma.5334

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.