Exact solution of the time fractional variant Boussinesq-Burgers equations
Bibekananda Bira; Hemanta Mandal; Dia Zeidan
Applications of Mathematics (2021)
- Volume: 66, Issue: 3, page 437-449
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBira, Bibekananda, Mandal, Hemanta, and Zeidan, Dia. "Exact solution of the time fractional variant Boussinesq-Burgers equations." Applications of Mathematics 66.3 (2021): 437-449. <http://eudml.org/doc/297588>.
@article{Bira2021,
abstract = {In the present article, we consider a nonlinear time fractional system of variant Boussinesq-Burgers equations. Using Lie group analysis, we derive the infinitesimal groups of transformations containing some arbitrary constants. Next, we obtain the system of optimal algebras for the symmetry group of transformations. Afterward, we consider one of the optimal algebras and construct similarity variables, which reduces the given system of fractional partial differential equations (FPDEs) to fractional ordinary differential equations (FODEs). Further, under the invariance condition we construct the exact solution and the physical significance of the solution is investigated graphically. Finally, we study the conservation law of the system of equations.},
author = {Bira, Bibekananda, Mandal, Hemanta, Zeidan, Dia},
journal = {Applications of Mathematics},
keywords = {fractional variant Boussinesq equation; symmetry analysis; exact solution},
language = {eng},
number = {3},
pages = {437-449},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exact solution of the time fractional variant Boussinesq-Burgers equations},
url = {http://eudml.org/doc/297588},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Bira, Bibekananda
AU - Mandal, Hemanta
AU - Zeidan, Dia
TI - Exact solution of the time fractional variant Boussinesq-Burgers equations
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 437
EP - 449
AB - In the present article, we consider a nonlinear time fractional system of variant Boussinesq-Burgers equations. Using Lie group analysis, we derive the infinitesimal groups of transformations containing some arbitrary constants. Next, we obtain the system of optimal algebras for the symmetry group of transformations. Afterward, we consider one of the optimal algebras and construct similarity variables, which reduces the given system of fractional partial differential equations (FPDEs) to fractional ordinary differential equations (FODEs). Further, under the invariance condition we construct the exact solution and the physical significance of the solution is investigated graphically. Finally, we study the conservation law of the system of equations.
LA - eng
KW - fractional variant Boussinesq equation; symmetry analysis; exact solution
UR - http://eudml.org/doc/297588
ER -
References
top- Abdel-Salam, E. A.-B., Hassan, G. F., 10.3906/fiz-1501-3, Turk. J. Phys. 39 (2015), 227-241. (2015) DOI10.3906/fiz-1501-3
- Ahmed, E., El-Sayed, A. M. A., El-Saka, H. A. A., 10.1016/j.physleta.2006.04.087, Phys. Lett., A 358 (2006), 1-4. (2006) Zbl1142.30303MR2244918DOI10.1016/j.physleta.2006.04.087
- Bira, B., Sekhar, T. R., Zeidan, D., 10.1002/mma.5186, Math. Methods Appl. Sci. 41 (2018), 6717-6725. (2018) Zbl06986320MR3879269DOI10.1002/mma.5186
- Buckwar, E., Luchko, Y., 10.1006/jmaa.1998.6078, J. Math. Anal. Appl. 227 (1998), 81-97. (1998) Zbl0932.58038MR1652906DOI10.1006/jmaa.1998.6078
- Costa, F. S., Marão, J. A. P. F., Soares, J. C. A., Oliveira, E. C. de, 10.1063/1.4915293, J. Math. Phys. 56 (2015), Article ID 033507, 16 pages. (2015) Zbl06423086MR3390932DOI10.1063/1.4915293
- Dehghan, M., Manafian, J., Saadatmandi, A., 10.1002/num.20460, Numer. Methods Partial Differ. Equations 26 (2010), 448-479. (2010) Zbl1185.65187MR2605472DOI10.1002/num.20460
- Fan, E., Hon, Y. C., 10.1016/S0960-0779(02)00144-3, Chaos Solitons Fractals 15 (2003), 559-566. (2003) Zbl1031.76008MR1932473DOI10.1016/S0960-0779(02)00144-3
- Gazizov, R. K., Kasatkin, A. A., Lukashchuk, S. Y., 10.1088/0031-8949/2009/T136/014016, Phys. Scr. T136 (2009), Article ID 014016, 5 pages. (2009) DOI10.1088/0031-8949/2009/T136/014016
- (ed.), R. Hilfer, 10.1142/3779, World Scientific, Singapore (2000). (2000) Zbl0998.26002MR1890104DOI10.1142/3779
- Inc, M., 10.1016/j.jmaa.2008.04.007, J. Math. Anal. Appl. 345 (2008), 476-484. (2008) Zbl1146.35304MR2422665DOI10.1016/j.jmaa.2008.04.007
- Kaur, L., Gupta, R. K., 10.1002/mma.2617, Math. Methods Appl. Sci. 36 (2013), 584-600. (2013) Zbl1282.35335MR3039661DOI10.1002/mma.2617
- Kaur, L., Wazwaz, A.-M., 10.1088/1402-4896/aac8b8, Phys. Scr. 93 (2018), Article ID 075203. (2018) DOI10.1088/1402-4896/aac8b8
- Kaur, L., Wazwaz, A.-M., 10.1016/j.ijleo.2018.08.072, Optik 174 (2018), 447-451. (2018) DOI10.1016/j.ijleo.2018.08.072
- Kaur, L., Wazwaz, A.-M., 10.1016/j.ijleo.2018.09.035, Optik 179 (2019), 479-484. (2019) DOI10.1016/j.ijleo.2018.09.035
- Kaur, L., Wazwaz, A.-M., 10.1108/HFF-07-2018-0405, Int. J. Numer. Methods Heat Fluid Flow 29 (2019), 569-579. (2019) MR4240713DOI10.1108/HFF-07-2018-0405
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/S0304-0208(06)80001-0, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/S0304-0208(06)80001-0
- Liu, H., 10.1111/sapm.12011, Stud. Appl. Math. 131 (2013), 317-330. (2013) Zbl1277.35305MR3125928DOI10.1111/sapm.12011
- Mandal, H., Bira, B., 10.1142/S0218348X19500191, Fractals 27 (2019), Article ID 1950019, 9 pages. (2019) MR3957174DOI10.1142/S0218348X19500191
- Mohamed, S. M., Khaled, A. G., 10.5897/SRE2013.5460, Sci. Res. Essays 8 (2013), 2163-2170. (2013) DOI10.5897/SRE2013.5460
- Morrison, P. J., Meiss, J. D., Cary, J. R., 10.1016/0167-2789(84)90014-9, Physica D 11 (1984), 324-336. (1984) Zbl0599.76028MR0761663DOI10.1016/0167-2789(84)90014-9
- Munro, S., Parkes, E. J., 10.1017/S0022377899007874, J. Plasma Phys. 62 (1999), 305-317. (1999) DOI10.1017/S0022377899007874
- Olver, P. J., 10.1007/978-1-4684-0274-2, Graduate Texts in Mathematics 107. Springer, New York (1986). (1986) Zbl0588.22001MR0836734DOI10.1007/978-1-4684-0274-2
- Sachs, R. L., 10.1016/0167-2789(88)90095-4, Physica D 30 (1988), 1-27. (1988) Zbl0694.35207MR0939264DOI10.1016/0167-2789(88)90095-4
- Schamel, H., 10.1017/S002237780000756X, J. Plasma Phys. 9 (1973), 377-387. (1973) DOI10.1017/S002237780000756X
- Singh, K., Gupta, R. K., 10.1016/j.ijengsci.2006.07.009, Int. J. Eng. Sci. 44 (2006), 1256-1268. (2006) Zbl1213.35362MR2273497DOI10.1016/j.ijengsci.2006.07.009
- Xu, M., Tan, W., 10.1007/s11433-006-0257-2, Sci. China, Ser. G 49 (2006), 257-272. (2006) Zbl1109.26005DOI10.1007/s11433-006-0257-2
- Yan, Z., Zhang, H., 10.1016/S0375-9601(98)00956-6, Phys. Lett. A 252 (1999), 291-296. (1999) Zbl0938.35130MR1669336DOI10.1016/S0375-9601(98)00956-6
- Zeidan, D., Bira, B., 10.1002/mma.5675, Math. Methods Appl. Sci. 42 (2019), 4679-4687. (2019) Zbl1423.35244MR3992933DOI10.1002/mma.5675
- Zeidan, D., Chau, C. K., Lu, T.-T., 10.1002/mma.5798, Math. Methods Appl. Sci. (2020). (2020) DOI10.1002/mma.5798
- Zeidan, D., Chau, C. K., Lu, T.-T., Zheng, W.-Q., 10.1002/mma.5982, Math. Methods Appl. Sci. 43 (2020), 2171-2188. (2020) Zbl1447.35012MR4078645DOI10.1002/mma.5982
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.