Page 1 Next

Displaying 1 – 20 of 46

Showing per page

A viscosity solution method for Shape-From-Shading without image boundary data

Emmanuel Prados, Fabio Camilli, Olivier Faugeras (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we propose a solution of the Lambertian shape-from-shading (SFS) problem by designing a new mathematical framework based on the notion of viscosity solution. The power of our approach is twofolds: (1) it defines a notion of weak solutions (in the viscosity sense) which does not necessarily require boundary data. Moreover, it allows to characterize the viscosity solutions by their “minimums”; and (2) it unifies the works of [Rouy and Tourin, SIAM J. Numer. Anal.29 (1992) 867–884],...

A-Quasiconvexity: Relaxation and Homogenization

Andrea Braides, Irene Fonseca, Giovanni Leoni (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Integral representation of relaxed energies and of Γ-limits of functionals ( u , v ) Ω f ( x , u ( x ) , v ( x ) ) d x are obtained when sequences of fields v may develop oscillations and are constrained to satisfy a system of first order linear partial differential equations. This framework includes the treatement of divergence-free fields, Maxwell's equations in micromagnetics, and curl-free fields. In the latter case classical relaxation theorems in W1,p, are recovered.

Continuity of solutions of linear, degenerate elliptic equations

Jani Onninen, Xiao Zhong (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider the simplest form of a second order, linear, degenerate, elliptic equation with divergence structure in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.

Equivalent formulations of generalized von Kármán equations for circular viscoelastic plates

Igor Brilla (1990)

Aplikace matematiky

The paper deals with the analysis of generalized von Kármán equations which desribe stability of a thin circular viscoelastic clamped plate of constant thickness under a uniform compressible load which is applied along its edge and depends on a real parameter. The meaning of a solution of the mathematical problem is extended and various equivalent reformulations of the problem are considered. The structural pattern of the generalized von Kármán equations is analyzed from the point of view of nonlinear...

Exact solution of the time fractional variant Boussinesq-Burgers equations

Bibekananda Bira, Hemanta Mandal, Dia Zeidan (2021)

Applications of Mathematics

In the present article, we consider a nonlinear time fractional system of variant Boussinesq-Burgers equations. Using Lie group analysis, we derive the infinitesimal groups of transformations containing some arbitrary constants. Next, we obtain the system of optimal algebras for the symmetry group of transformations. Afterward, we consider one of the optimal algebras and construct similarity variables, which reduces the given system of fractional partial differential equations (FPDEs) to fractional...

On a nonlocal problem for a confined plasma in a Tokamak

Weilin Zou, Fengquan Li, Boqiang Lv (2013)

Applications of Mathematics

The paper deals with a nonlocal problem related to the equilibrium of a confined plasma in a Tokamak machine. This problem involves terms u * ' ( | u > u ( x ) | ) and | u > u ( x ) | , which are neither local, nor continuous, nor monotone. By using the Galerkin approximate method and establishing some properties of the decreasing rearrangement, we prove the existence of solutions to such problem.

On global solutions to a nonlinear Alfvén wave equation

XS. Feng, F. Wei (1995)

Annales Polonici Mathematici

We establish the global existence and uniqueness of smooth solutions to a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial asymptotic behavior of the solution is discussed.

On optimal decay rates for weak solutions to the Navier-Stokes equations in R n

Tetsuro Miyakawa, Maria Elena Schonbek (2001)

Mathematica Bohemica

This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in n . Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound u ( t ) ( t + 1 ) - n + 4 2 .

Currently displaying 1 – 20 of 46

Page 1 Next