Some interpretations of the ( k , p ) -Fibonacci numbers

Natalia Paja; Iwona Włoch

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Volume: 62, Issue: 3, page 297-307
  • ISSN: 0010-2628

Abstract

top
In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the ( k , p ) -Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the ( k , p ) -Fibonacci numbers.

How to cite

top

Paja, Natalia, and Włoch, Iwona. "Some interpretations of the $(k,p)$-Fibonacci numbers." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 297-307. <http://eudml.org/doc/297597>.

@article{Paja2021,
abstract = {In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the $(k,p)$-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the $(k,p)$-Fibonacci numbers.},
author = {Paja, Natalia, Włoch, Iwona},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fibonacci number; Pell number; tiling},
language = {eng},
number = {3},
pages = {297-307},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some interpretations of the $(k,p)$-Fibonacci numbers},
url = {http://eudml.org/doc/297597},
volume = {62},
year = {2021},
}

TY - JOUR
AU - Paja, Natalia
AU - Włoch, Iwona
TI - Some interpretations of the $(k,p)$-Fibonacci numbers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 297
EP - 307
AB - In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the $(k,p)$-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the $(k,p)$-Fibonacci numbers.
LA - eng
KW - Fibonacci number; Pell number; tiling
UR - http://eudml.org/doc/297597
ER -

References

top
  1. Bednarz N., 10.3390/math9070727, Mathematics 9 (2021), no. 7, page 727. DOI10.3390/math9070727
  2. Bednarz N., Włoch A., Włoch I., The Fibonacci numbers in edge coloured unicyclic graphs, Util. Math. 106 (2018), 39–49. 
  3. Bednarz U., Bród D., Szynal-Liana A., Włoch I., Wołowiec-Musiał M., 10.7494/OpMath.2017.37.4.479, Opuscula Math. 37 (2017), no. 4, 479–490. DOI10.7494/OpMath.2017.37.4.479
  4. Bednarz U., Włoch I., 10.7151/dmgt.1997, Discuss. Math. Graph Theory 38 (2018), no. 1, 121–133. DOI10.7151/dmgt.1997
  5. Bednarz U., Włoch I., Wołowiec-Musiał M., Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math. (2015), Art. ID 837917, 7 pages. 
  6. Berge C., Principles of Combinatorics, translated from the French Mathematics in Science and Engineering, 72, Academic Press, New York, 1971. 
  7. Catarino P., 10.12988/ijma.2013.35131, Int. J. Math. Anal. (Ruse) 7(2013), no. 37–40, 1877–1884. DOI10.12988/ijma.2013.35131
  8. Diestel R., Graph Theory, Graduate Texts in Mathematics, 173, Springer, Berlin, 2005. Zbl1218.05001
  9. Falcón S., Plaza Á., 10.1016/j.chaos.2006.09.022, Chaos Solitons Fractals 32 (2007), no. 5, 1615–1624. DOI10.1016/j.chaos.2006.09.022
  10. Kiliç E., 10.1016/j.chaos.2007.09.081, Chaos Solitons Fractals 40 (2009), no. 4, 2047–2063. DOI10.1016/j.chaos.2007.09.081
  11. Koshy T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014. 
  12. Kwaśnik M., Włoch I., The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000), 139–146. 
  13. Marques D., Trojovský P., On characteristic polynomial of higher order generalized Jacobsthal numbers, Adv. Difference Equ. (2019), Paper No. 392, 9 pages. 
  14. Miles E. P., Jr., 10.1080/00029890.1960.11989593, Amer. Math. Monthly 67 (1960), 745–752. DOI10.1080/00029890.1960.11989593
  15. Stakhov A. P., An Introduction to the Algorithmic Theory of Measurement, Sovetskoe Radio, Moscow, 1977 (Russian). 
  16. Prodinger H., Tichy R. F., Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), no. 1, 16–21. 
  17. Włoch I., On generalized Pell numbers and their graph representations, Comment. Math. 48 (2008), no. 2, 169–175. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.