Some interpretations of the -Fibonacci numbers
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 3, page 297-307
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPaja, Natalia, and Włoch, Iwona. "Some interpretations of the $(k,p)$-Fibonacci numbers." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 297-307. <http://eudml.org/doc/297597>.
@article{Paja2021,
abstract = {In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the $(k,p)$-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the $(k,p)$-Fibonacci numbers.},
author = {Paja, Natalia, Włoch, Iwona},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fibonacci number; Pell number; tiling},
language = {eng},
number = {3},
pages = {297-307},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some interpretations of the $(k,p)$-Fibonacci numbers},
url = {http://eudml.org/doc/297597},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Paja, Natalia
AU - Włoch, Iwona
TI - Some interpretations of the $(k,p)$-Fibonacci numbers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 297
EP - 307
AB - In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the $(k,p)$-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the $(k,p)$-Fibonacci numbers.
LA - eng
KW - Fibonacci number; Pell number; tiling
UR - http://eudml.org/doc/297597
ER -
References
top- Bednarz N., 10.3390/math9070727, Mathematics 9 (2021), no. 7, page 727. DOI10.3390/math9070727
- Bednarz N., Włoch A., Włoch I., The Fibonacci numbers in edge coloured unicyclic graphs, Util. Math. 106 (2018), 39–49.
- Bednarz U., Bród D., Szynal-Liana A., Włoch I., Wołowiec-Musiał M., 10.7494/OpMath.2017.37.4.479, Opuscula Math. 37 (2017), no. 4, 479–490. DOI10.7494/OpMath.2017.37.4.479
- Bednarz U., Włoch I., 10.7151/dmgt.1997, Discuss. Math. Graph Theory 38 (2018), no. 1, 121–133. DOI10.7151/dmgt.1997
- Bednarz U., Włoch I., Wołowiec-Musiał M., Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math. (2015), Art. ID 837917, 7 pages.
- Berge C., Principles of Combinatorics, translated from the French Mathematics in Science and Engineering, 72, Academic Press, New York, 1971.
- Catarino P., 10.12988/ijma.2013.35131, Int. J. Math. Anal. (Ruse) 7(2013), no. 37–40, 1877–1884. DOI10.12988/ijma.2013.35131
- Diestel R., Graph Theory, Graduate Texts in Mathematics, 173, Springer, Berlin, 2005. Zbl1218.05001
- Falcón S., Plaza Á., 10.1016/j.chaos.2006.09.022, Chaos Solitons Fractals 32 (2007), no. 5, 1615–1624. DOI10.1016/j.chaos.2006.09.022
- Kiliç E., 10.1016/j.chaos.2007.09.081, Chaos Solitons Fractals 40 (2009), no. 4, 2047–2063. DOI10.1016/j.chaos.2007.09.081
- Koshy T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- Kwaśnik M., Włoch I., The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000), 139–146.
- Marques D., Trojovský P., On characteristic polynomial of higher order generalized Jacobsthal numbers, Adv. Difference Equ. (2019), Paper No. 392, 9 pages.
- Miles E. P., Jr., 10.1080/00029890.1960.11989593, Amer. Math. Monthly 67 (1960), 745–752. DOI10.1080/00029890.1960.11989593
- Stakhov A. P., An Introduction to the Algorithmic Theory of Measurement, Sovetskoe Radio, Moscow, 1977 (Russian).
- Prodinger H., Tichy R. F., Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), no. 1, 16–21.
- Włoch I., On generalized Pell numbers and their graph representations, Comment. Math. 48 (2008), no. 2, 169–175.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.