Root location for the characteristic polynomial of a Fibonacci type sequence
Zhibin Du; Carlos Martins da Fonseca
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 189-195
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDu, Zhibin, and da Fonseca, Carlos Martins. "Root location for the characteristic polynomial of a Fibonacci type sequence." Czechoslovak Mathematical Journal 73.1 (2023): 189-195. <http://eudml.org/doc/299592>.
@article{Du2023,
abstract = {We analyse the roots of the polynomial $x^n-px^\{n-1\}-qx-1$ for $p\geqslant q\geqslant 1$. This is the characteristic polynomial of the recurrence relation $F_\{k,p,q\}(n) = pF_\{k,p,q\}(n- 1) + qF_\{k,p,q\}(n-k + 1) + F_\{k,p,q\}(n-k)$ for $n \geqslant k$, which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.},
author = {Du, Zhibin, da Fonseca, Carlos Martins},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fibonacci number; root; characteristic polynomial},
language = {eng},
number = {1},
pages = {189-195},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Root location for the characteristic polynomial of a Fibonacci type sequence},
url = {http://eudml.org/doc/299592},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Du, Zhibin
AU - da Fonseca, Carlos Martins
TI - Root location for the characteristic polynomial of a Fibonacci type sequence
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 189
EP - 195
AB - We analyse the roots of the polynomial $x^n-px^{n-1}-qx-1$ for $p\geqslant q\geqslant 1$. This is the characteristic polynomial of the recurrence relation $F_{k,p,q}(n) = pF_{k,p,q}(n- 1) + qF_{k,p,q}(n-k + 1) + F_{k,p,q}(n-k)$ for $n \geqslant k$, which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.
LA - eng
KW - Fibonacci number; root; characteristic polynomial
UR - http://eudml.org/doc/299592
ER -
References
top- Bednarz, N., 10.3390/math9070727, Mathematics 9 (2021), Article ID 727, 13 pages. (2021) DOI10.3390/math9070727
- Fonseca, C. M. da, 10.1007/s10587-011-0059-1, Czech. Math. J. 61 (2011), 917-921. (2011) Zbl1249.15011MR2886247DOI10.1007/s10587-011-0059-1
- Glasser, M. L., The quadratic formula made hard: A less radical approach to solving equations, Available at https://arxiv.org/abs/math/9411224 (1994), 4 pages. (1994)
- Janjić, M., Determinants and recurrence sequences, J. Integer Seq. 15 (2012), Article ID 12.3.5, 21 pages. (2012) Zbl1286.11017MR2908736
- Kilic, E., 10.1016/j.cam.2006.10.071, J. Comput. Appl. Math. 209 (2007), 133-145. (2007) Zbl1162.11013MR2387120DOI10.1016/j.cam.2006.10.071
- Merca, M., 10.2478/spma-2013-0003, Spec. Matrices 1 (2013), 10-16. (2013) Zbl1291.15015MR3155395DOI10.2478/spma-2013-0003
- Paja, N., Włoch, I., 10.14712/1213-7243.2021.026, Commentat. Math. Univ. Carol. 62 (2021), 297-307. (2021) Zbl07442493MR4331284DOI10.14712/1213-7243.2021.026
- Stakhov, A., Rozin, B., 10.1016/j.chaos.2005.04.107, Chaos Solitons Fractals 27 (2006), 1415-1421. (2006) Zbl1148.11009MR2164865DOI10.1016/j.chaos.2005.04.107
- Stakhov, A., Rozin, B., 10.1016/j.chaos.2005.04.106, Chaos Solitons Fractals 27 (2006), 1162-1177. (2006) Zbl1178.11018MR2164849DOI10.1016/j.chaos.2005.04.106
- Trojovský, P., 10.3390/math8081387, Mathematics 8 (2020), Article ID 1387, 8 pages. (2020) MR4197344DOI10.3390/math8081387
- Trojovský, P., 10.1186/s13662-020-03186-8, Adv. Difference Equ. 2021 (2021), Article ID 28, 9 pages. (2021) Zbl1485.11038MR4197344DOI10.1186/s13662-020-03186-8
- Verde-Star, L., 10.1515/spma-2017-0002, Spec. Matrices 5 (2017), 64-72. (2017) Zbl1360.15034MR3602625DOI10.1515/spma-2017-0002
- Włoch, I., On generalized Pell numbers and their graph representations, Commentat. Math. 48 (2008), 169-175. (2008) Zbl1175.05105MR2482763
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.