Notes on generalizations of Bézout rings

Haitham El Alaoui; Hakima Mouanis

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Volume: 62, Issue: 3, page 265-272
  • ISSN: 0010-2628

Abstract

top
In this paper, we give new characterizations of the P - 2 -Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non- 2 -Bézout P - 2 -Bézout rings and examples of non- P -Bézout P - 2 -Bézout rings.

How to cite

top

El Alaoui, Haitham, and Mouanis, Hakima. "Notes on generalizations of Bézout rings." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 265-272. <http://eudml.org/doc/297613>.

@article{ElAlaoui2021,
abstract = {In this paper, we give new characterizations of the $P$-$2$-Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non-$2$-Bézout $P$-$2$-Bézout rings and examples of non-$P$-Bézout $P$-$2$-Bézout rings.},
author = {El Alaoui, Haitham, Mouanis, Hakima},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$P$-Bézout ring; 2-Bézout ring; $P$-2-Bézout ring; trivial rings extension; homomorphic image; finite direct product},
language = {eng},
number = {3},
pages = {265-272},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Notes on generalizations of Bézout rings},
url = {http://eudml.org/doc/297613},
volume = {62},
year = {2021},
}

TY - JOUR
AU - El Alaoui, Haitham
AU - Mouanis, Hakima
TI - Notes on generalizations of Bézout rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 265
EP - 272
AB - In this paper, we give new characterizations of the $P$-$2$-Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non-$2$-Bézout $P$-$2$-Bézout rings and examples of non-$P$-Bézout $P$-$2$-Bézout rings.
LA - eng
KW - $P$-Bézout ring; 2-Bézout ring; $P$-2-Bézout ring; trivial rings extension; homomorphic image; finite direct product
UR - http://eudml.org/doc/297613
ER -

References

top
  1. Anderson D. D., Winders M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), no. 1, 3–56. Zbl1194.13002DOI10.1216/JCA-2009-1-1-3
  2. Bakkari C., On P -Bézout rings, Int. J. of Algebra 3 (2009), no. 13–16, 669–673. 
  3. Bakkari C., P -Bézout property in pullbacks, Int. J. Contemp. Math. Sci. 4 (2009), no. 21–24, 1209–1213. 
  4. Bakkari C., Ouarghi K., On 2 -Bézout rings, Int. J. Algebra 4 (2010), no. 5–8, 241–245. 
  5. Costa D. L., 10.1080/00927879408825061, Comm. Algebra 22 (1994), no. 10, 3997–4011. Zbl0814.13010DOI10.1080/00927879408825061
  6. El Alaoui H., Mouanis H., On P - 2 -Bézout rings, Gulf J. Math. 7 (2019), no. 3, 1–6. 
  7. Gillman L., Henriksen M., 10.1090/S0002-9947-1956-0078979-8, Trans. Amer. Math. Soc. 82 (1956), 362–365. DOI10.1090/S0002-9947-1956-0078979-8
  8. Glaz S., 10.1007/BFb0084576, Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. Zbl0787.13001DOI10.1007/BFb0084576
  9. Huckaba J. A., Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, New York, 1988. Zbl0637.13001
  10. Kabbaj S.-E., Mahdou N., 10.1081/AGB-200027791, Comm. Algebra 32 (2004), no. 10, 3937–3953. Zbl1068.13002DOI10.1081/AGB-200027791
  11. Kaplansky I., 10.1090/S0002-9947-1949-0031470-3, Trans. Amer. Math. Soc. 66 (1949), 464–491. DOI10.1090/S0002-9947-1949-0031470-3
  12. Larsen M. D., Lewis W. J., Shores T. S., 10.1090/S0002-9947-1974-0335499-1, Trans. Amer. Math. Soc. 187 (1974), 231–248. DOI10.1090/S0002-9947-1974-0335499-1
  13. Mahdou N., 10.1081/AGB-4986, Comm. Algebra 29 (2001), no. 7, 2775–2785. DOI10.1081/AGB-4986
  14. Mahdou N., 10.1080/00927870500242991, Comm. Algebra 33 (2005), no. 10, 3489–3496. Zbl1080.13004DOI10.1080/00927870500242991
  15. Palmér I., Roos J.-E., 10.1016/0021-8693(73)90113-0, J. Algebra 27 (1973), 380–413. DOI10.1016/0021-8693(73)90113-0
  16. Rotman J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Harcourt Brace Jovanovich, New York, 1979. Zbl1157.18001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.