Uniformly starlike functions and uniformly convex functions related to the Pascal distribution

Gangadharan Murugusundaramoorthy; Sibel Yalçın

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 419-428
  • ISSN: 0862-7959

Abstract

top
In this article, we aim to find sufficient conditions for a convolution of analytic univalent functions and the Pascal distribution series to belong to the families of uniformly starlike functions and uniformly convex functions in the open unit disk 𝕌 . We also state corollaries of our main results.

How to cite

top

Murugusundaramoorthy, Gangadharan, and Yalçın, Sibel. "Uniformly starlike functions and uniformly convex functions related to the Pascal distribution." Mathematica Bohemica 146.4 (2021): 419-428. <http://eudml.org/doc/297616>.

@article{Murugusundaramoorthy2021,
abstract = {In this article, we aim to find sufficient conditions for a convolution of analytic univalent functions and the Pascal distribution series to belong to the families of uniformly starlike functions and uniformly convex functions in the open unit disk $\mathbb \{U\}$. We also state corollaries of our main results.},
author = {Murugusundaramoorthy, Gangadharan, Yalçın, Sibel},
journal = {Mathematica Bohemica},
keywords = {uniformly starlike function; uniformly convex function; starlike function; convex function; Pascal distribution; convolution},
language = {eng},
number = {4},
pages = {419-428},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniformly starlike functions and uniformly convex functions related to the Pascal distribution},
url = {http://eudml.org/doc/297616},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Murugusundaramoorthy, Gangadharan
AU - Yalçın, Sibel
TI - Uniformly starlike functions and uniformly convex functions related to the Pascal distribution
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 419
EP - 428
AB - In this article, we aim to find sufficient conditions for a convolution of analytic univalent functions and the Pascal distribution series to belong to the families of uniformly starlike functions and uniformly convex functions in the open unit disk $\mathbb {U}$. We also state corollaries of our main results.
LA - eng
KW - uniformly starlike function; uniformly convex function; starlike function; convex function; Pascal distribution; convolution
UR - http://eudml.org/doc/297616
ER -

References

top
  1. nkaya, Ş. Altı, n, S. Yalçı, Poisson distribution series for certain subclasses of starlike functions with negative coefficients, An. Univ. Oradea, Fasc. Mat. 24 (2017), 5-8. (2017) Zbl1399.30027MR3931277
  2. nkaya, Ş. Altı, n, S. Yalçı, 10.1007/s11785-018-0764-y, Complex Anal. Oper. Theory 12 (2018), 1315-1319. (2018) Zbl1393.30012MR3800974DOI10.1007/s11785-018-0764-y
  3. Çakmak, S., n, S. Yalçı, nkaya, Ş. Altı, Some connections between various classes of analytic functions associated with the power series distribution, Sakarya Univ. J. Sci. 23 (2019), 982-985. (2019) 
  4. Cho, N. E., Woo, S. Y., Owa, S., Uniform convexity properties for hypergeometric functions, Fract. Calc. Appl. Anal. 5 (2002), 303-313. (2002) Zbl1028.30013MR1922272
  5. Branges, L. de, 10.1007/BF02392821, Acta Math. 154 (1985), 137-152. (1985) Zbl0573.30014MR0772434DOI10.1007/BF02392821
  6. El-Deeb, S. M., Bulboacă, T., Dziok, J., 10.5666/KMJ.2019.59.2.301, Kyungpook Math. J. 59 (2019), 301-314. (2019) Zbl07167097MR3987710DOI10.5666/KMJ.2019.59.2.301
  7. Merkes, E. P., Scott, W. T., 10.1090/S0002-9939-1961-0143950-1, Proc. Am. Math. Soc. 12 (1961), 885-888. (1961) Zbl0102.06502MR0143950DOI10.1090/S0002-9939-1961-0143950-1
  8. Murugusundaramoorthy, G., 10.1007/s13370-017-0520-x, Afr. Mat. 28 (2017), 1357-1366. (2017) Zbl1381.30015MR3714601DOI10.1007/s13370-017-0520-x
  9. Murugusundaramoorthy, G., Vijaya, K., Porwal, S., 10.15672/HJMS.20164513110, Hacet. J. Math. Stat. 45 (2016), 1101-1107. (2016) Zbl1359.30022MR3585439DOI10.15672/HJMS.20164513110
  10. Owa, S., Srivastava, H. M., 10.4153/CJM-1987-054-3, Can. J. Math. 39 (1987), 1057-1077. (1987) Zbl0611.33007MR0918587DOI10.4153/CJM-1987-054-3
  11. Porwal, S., Mapping properties of generalized Bessel functions on some subclasses of univalent functions, An. Univ. Oradea, Fasc. Mat. 20 (2013), 51-60. (2013) Zbl1313.30070MR3154762
  12. Porwal, S., 10.1155/2014/984135, J. Complex Anal. 2014 (2014), Article ID 984135, 3 pages. (2014) Zbl1310.30017MR3173344DOI10.1155/2014/984135
  13. Porwal, S., nkaya, Ş. Altı, n, S. Yalçı, 10.17114/j.aua.2019.58.04, Acta Univ. Apulensis, Math. Inform. 58 (2019), 45-52. (2019) Zbl07122534MR3973322DOI10.17114/j.aua.2019.58.04
  14. Porwal, S., Kumar, M., 10.1007/s13370-016-0398-z, Afr. Mat. 27 (2016), 1021-1027. (2016) Zbl1352.30014MR3536083DOI10.1007/s13370-016-0398-z
  15. Rosy, T., Stephen, B. A., Subramanian, K. G., Silverman, H., 10.1155/S0161171200003082, Int. J. Math. Math. Sci. 23 (2000), 819-825. (2000) Zbl0957.30009MR1769866DOI10.1155/S0161171200003082
  16. Silverman, H., 10.1006/jmaa.1993.1044, J. Math. Anal. Appl. 172 (1993), 574-581. (1993) Zbl0774.30015MR1201006DOI10.1006/jmaa.1993.1044
  17. Srivastava, H. M., Murugusundaramoorthy, G., Sivasubramanian, S., 10.1080/10652460701391324, Integral Transforms Spec. Funct. 18 (2007), 511-520. (2007) Zbl1198.30013MR2348596DOI10.1080/10652460701391324
  18. Subramanian, K. G., Murugusundaramoorthy, G., Balasubrahmanyam, P., Silverman, H., Subclasses of uniformly convex and uniformly starlike functions, Math. Jap. 42 (1995), 517-522. (1995) Zbl0837.30011MR1363841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.