A new energy conservative scheme for regularized long wave equation
Yuesheng Luo; Ruixue Xing; Xiaole Li
Applications of Mathematics (2021)
- Volume: 66, Issue: 5, page 745-765
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLuo, Yuesheng, Xing, Ruixue, and Li, Xiaole. "A new energy conservative scheme for regularized long wave equation." Applications of Mathematics 66.5 (2021): 745-765. <http://eudml.org/doc/297618>.
@article{Luo2021,
abstract = {An energy conservative scheme is proposed for the regularized long wave (RLW) equation. The integral method with variational limit is used to discretize the spatial derivative and the finite difference method is used to discretize the time derivative. The energy conservation of the scheme and existence of the numerical solution are proved. The convergence of the order $O(h^2 + \tau ^2)$ and unconditional stability are also derived. Numerical examples are carried out to verify the correctness of the theoretical analysis.},
author = {Luo, Yuesheng, Xing, Ruixue, Li, Xiaole},
journal = {Applications of Mathematics},
keywords = {regularized long wave equation; integral method with variational limit; finite difference method; Lagrange interpolation; energy conservation scheme},
language = {eng},
number = {5},
pages = {745-765},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new energy conservative scheme for regularized long wave equation},
url = {http://eudml.org/doc/297618},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Luo, Yuesheng
AU - Xing, Ruixue
AU - Li, Xiaole
TI - A new energy conservative scheme for regularized long wave equation
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 5
SP - 745
EP - 765
AB - An energy conservative scheme is proposed for the regularized long wave (RLW) equation. The integral method with variational limit is used to discretize the spatial derivative and the finite difference method is used to discretize the time derivative. The energy conservation of the scheme and existence of the numerical solution are proved. The convergence of the order $O(h^2 + \tau ^2)$ and unconditional stability are also derived. Numerical examples are carried out to verify the correctness of the theoretical analysis.
LA - eng
KW - regularized long wave equation; integral method with variational limit; finite difference method; Lagrange interpolation; energy conservation scheme
UR - http://eudml.org/doc/297618
ER -
References
top- Brango, C. Banquet, 10.1016/j.physd.2011.10.007, Physica D 241 (2012), 125-133. (2012) Zbl1252.35130DOI10.1016/j.physd.2011.10.007
- Bhardwaj, D., Shankar, R., 10.1016/S0898-1221(00)00248-0, Comput. Math. Appl. 40 (2000), 1397-1404. (2000) Zbl0965.65108MR1803919DOI10.1016/S0898-1221(00)00248-0
- Bhowmik, S. K., Karakoc, S. B. G., 10.1002/num.22410, Numer. Methods Partial Differ. Equations 35 (2019), 2236-2257. (2019) Zbl1431.65169MR4022940DOI10.1002/num.22410
- Cai, J., 10.1016/j.cpc.2009.05.009, Comput. Phys. Commun. 180 (2009), 1821-1831. (2009) Zbl1197.65144MR2678455DOI10.1016/j.cpc.2009.05.009
- Chegini, N. G., Salaripanah, A., Mokhtari, R., Isvand, D., 10.1007/s11071-011-0277-y, Nonlinear Dyn. 69 (2012), 459-471. (2012) Zbl1258.65076MR2929885DOI10.1007/s11071-011-0277-y
- Chertovskih, R., Chian, A. C.-L., Podvigina, O., Rempel, E. L., Zheligovsky, V., Existence, uniqueness, and analyticity of space-periodic solutions to the regularized long-wave equation, Adv. Differ. Equ. 19 (2014), 725-754. (2014) Zbl1292.35227MR3252900
- Dogan, A., 10.1016/S0307-904X(01)00084-1, Appl. Math. Modelling 26 (2002), 771-783. (2002) Zbl1016.76046DOI10.1016/S0307-904X(01)00084-1
- Eilbeck, J. C., McGuire, G. R., 10.1016/0021-9991(75)90115-1, J. Comput. Phys. 19 (1975), 43-57. (1975) Zbl0325.65054MR0400907DOI10.1016/0021-9991(75)90115-1
- Fang, S., Guo, B., Qiu, H., 10.1016/j.cnsns.2007.07.001, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 61-68. (2009) Zbl1221.35362MR2458711DOI10.1016/j.cnsns.2007.07.001
- Gardner, L. R. T., Gardner, G. A., Dag, I., 10.1002/cnm.1640110109, Commun. Numer. Methods Eng. 11 (1995), 59-68. (1995) Zbl0819.65125MR1312879DOI10.1002/cnm.1640110109
- Guo, L., Chen, H., 10.1007/s00607-005-0158-7, Computing 77 (2006), 205-221. (2006) Zbl1098.65096MR2214448DOI10.1007/s00607-005-0158-7
- Guo, B., Shang, Y., 10.1007/s10255-003-0095-1, Acta Math. Appl. Sin., Engl. Ser. 19 (2003), 191-204. (2003) Zbl1059.35105MR2011482DOI10.1007/s10255-003-0095-1
- Hammad, D. A., El-Azab, M. S., 10.1016/j.amc.2016.03.033, Appl. Math. Comput. 285 (2016), 228-240. (2016) Zbl1410.65395MR3494425DOI10.1016/j.amc.2016.03.033
- Hu, J., Zheng, K., 10.1155/2010/543503, Bound. Value Probl. 2010 (2010), Article ID 543503, 18 pages. (2010) Zbl1187.65090MR2600713DOI10.1155/2010/543503
- Irk, D., Keskin, P., 10.11948/2017038, J. Appl. Anal. Comput. 7 (2017), 617-631. (2017) MR3602441DOI10.11948/2017038
- Irk, D., Yildiz, P. Keskin, Görgülü, M. Zorşahin, 10.3906/mat-1804-55, Turk. J. Math. 43 (2019), 112-125. (2019) Zbl1417.65172MR3909279DOI10.3906/mat-1804-55
- Karakoc, S. B. G., Yagmurlu, N. M., Ucar, Y., 10.1186/1687-2770-2013-27, Bound. Value Probl. 2013 (2013), Article ID 27, 17 pages. (2013) Zbl1284.65142MR3110753DOI10.1186/1687-2770-2013-27
- Kumar, R., Baskar, S., 10.1016/j.cam.2015.06.015, J. Comput. Appl. Math. 292 (2016), 41-66. (2016) Zbl1329.65236MR3392380DOI10.1016/j.cam.2015.06.015
- Lin, B., 10.1111/sapm.12022, Stud. Appl. Math. 132 (2014), 160-182. (2014) Zbl1291.65302MR3167092DOI10.1111/sapm.12022
- Lin, B., 10.1016/j.amc.2014.05.133, Appl. Math. Comput. 243 (2014), 358-367. (2014) Zbl1336.65176MR3244483DOI10.1016/j.amc.2014.05.133
- Lin, B., 10.1080/00207160.2014.950254, Int. J. Comput. Math. 92 (2015), 1591-1607. (2015) Zbl1317.65054MR3340634DOI10.1080/00207160.2014.950254
- Luo, Y., Li, X., Guo, C., 10.1002/num.22143, Numer. Methods Partial Differ. Equations 33 (2017), 1283-1304. (2017) Zbl1377.65119MR3652187DOI10.1002/num.22143
- Oruç, Ö., Bulut, F., Esen, A., 10.1007/s00009-016-0682-z, Mediterr. J. Math. 13 (2016), 3235-3253. (2016) Zbl1354.65194MR3554305DOI10.1007/s00009-016-0682-z
- Peregrine, D. H., 10.1017/S0022112066001678, J. Fluid Mech. 25 (1966), 321-330. (1966) DOI10.1017/S0022112066001678
- Peregrine, D. H., 10.1017/S0022112067002605, J. Fluid Mech. 27 (1967), 815-827. (1967) Zbl0163.21105DOI10.1017/S0022112067002605
- Pindza, E., Maré, E., 10.1155/2014/178024, Int. J. Comput. Math. 2014 (2014), Article ID 178024, 12 pages. (2014) DOI10.1155/2014/178024
- Raslan, K. R., 10.1016/j.amc.2004.06.130, Appl. Math. Comput. 167 (2005), 1101-1118. (2005) Zbl1082.65582MR2169754DOI10.1016/j.amc.2004.06.130
- Rouatbi, A., Achouri, T., Omrani, K., 10.1007/s40314-017-0567-1, Comput. Appl. Math. 37 (2018), 4169-4195. (2018) Zbl1402.65090MR3848530DOI10.1007/s40314-017-0567-1
- Salih, H., Tawfiq, L. N. M., Yahya, Z. R., Zin, S. Mat, 10.1088/1742-6596/1003/1/012062, J. Phys., Conf. Ser. 1003 (2018), Article ID 012062, 9 pages. (2018) DOI10.1088/1742-6596/1003/1/012062
- Shang, Y., Guo, B., 10.1007/BF02440077, Appl. Math. Mech., Engl. Ed. 26 (2005), 283-291. (2005) Zbl1144.76304MR2132120DOI10.1007/BF02440077
- Shao, X., Xue, G., Li, C., 10.1016/j.amc.2013.03.068, Appl. Math. Comput. 219 (2013), 9202-9209. (2013) Zbl1288.65125MR3047814DOI10.1016/j.amc.2013.03.068
- Soliman, A. A., 10.1080/00207160412331272135, Int. J. Comput. Math. 81 (2004), 1281-1288. (2004) Zbl1063.65086MR2173459DOI10.1080/00207160412331272135
- Wang, B., Sun, T., Liang, D., 10.1016/j.cam.2019.01.036, J. Comput. Appl. Math. 356 (2019), 98-117. (2019) Zbl1419.65033MR3915392DOI10.1016/j.cam.2019.01.036
- Xie, S., Kim, S., Woo, G., Yi, S., 10.1137/070683623, SIAM J. Sci. Comput. 30 (2008), 2263-2285. (2008) Zbl1181.65125MR2429465DOI10.1137/070683623
- Yan, J., Lai, M.-C., Li, Z., Zhang, Z., 10.4208/aamm.2014.m888, Adv. Appl. Math. Mech. 9 (2017), 250-271. (2017) MR3598526DOI10.4208/aamm.2014.m888
- Zhang, L., 10.1016/j.amc.2004.09.027, Appl. Math. Comput. 168 (2005), 962-972. (2005) Zbl1080.65079MR2171754DOI10.1016/j.amc.2004.09.027
- Zheng, K., Hu, J., 10.1186/1687-1847-2013-287, Adv. Difference Equ. 2013 (2013), Article ID 287, 12 pages. (2013) Zbl1444.65051MR3337283DOI10.1186/1687-1847-2013-287
- Zhou, Y., Applications of Discrete Functional Analysis to the Finite Difference Method, International Academic Publishers, Beijing (1991). (1991) Zbl0732.65080MR1133399
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.