Robust observer-based finite-time control designs for discrete nonlinear systems with time-varying delay
Yali Dong; Huimin Wang; Mengxiao Deng
Kybernetika (2021)
- Issue: 1, page 102-117
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDong, Yali, Wang, Huimin, and Deng, Mengxiao. "Robust observer-based finite-time $H_{\infty }$ control designs for discrete nonlinear systems with time-varying delay." Kybernetika (2021): 102-117. <http://eudml.org/doc/297630>.
@article{Dong2021,
abstract = {This paper investigates the problem of observer-based finite-time $H_\{\infty \}$ control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is $H_\{\infty \}$ finite-time bounded via observer-based control. The observer-based controller for the finite-time $H_\{\infty \}$ control problem is developed. Finally, a numerical example illustrates the efficiency of proposed methods.},
author = {Dong, Yali, Wang, Huimin, Deng, Mengxiao},
journal = {Kybernetika},
keywords = {observer-based control; $H_\{\infty \}$ finite-time boundedness; Lyapunov–Krasovskii functional; discrete-time systems; time-varying delay},
language = {eng},
number = {1},
pages = {102-117},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust observer-based finite-time $H_\{\infty \}$ control designs for discrete nonlinear systems with time-varying delay},
url = {http://eudml.org/doc/297630},
year = {2021},
}
TY - JOUR
AU - Dong, Yali
AU - Wang, Huimin
AU - Deng, Mengxiao
TI - Robust observer-based finite-time $H_{\infty }$ control designs for discrete nonlinear systems with time-varying delay
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 102
EP - 117
AB - This paper investigates the problem of observer-based finite-time $H_{\infty }$ control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is $H_{\infty }$ finite-time bounded via observer-based control. The observer-based controller for the finite-time $H_{\infty }$ control problem is developed. Finally, a numerical example illustrates the efficiency of proposed methods.
LA - eng
KW - observer-based control; $H_{\infty }$ finite-time boundedness; Lyapunov–Krasovskii functional; discrete-time systems; time-varying delay
UR - http://eudml.org/doc/297630
ER -
References
top- Amato, F., Ambrosino, R., Ariola, M., Tommasi, G. De, Pironti, A., , Automatica 107 (2019), 454-466. MR3979026DOI
- Amato, F., Darouach, M., Tommasi, G. De, , IEEE Trans. Automat. Control 62 (2017), 12, 6521-6528. MR3743535DOI
- Ahmad, S., Rehan, M., , J. Frankl. Inst. 353 (2016), 4, 903-916. MR3463288DOI
- Amato, F., Arioial, M., Dorato, P., , Automatica 37 (2001), 1459-1463. DOI
- Cheng, J., Zhu, H., Zhong, S. M., Zeng, Y., Hou, L. Y., , Int. J. Adapt. Control Signal Process. 28 (2014), 1024-1042. MR3269858DOI
- Dong, Y., Chen, L., Mei, S., , Int. J. Adapt. Control Signal Process. 33 (2019), 1, 527-544. MR3925377DOI
- Dong, Y., Li, T., Mei, S., , Math. Meth. Appl. Sci. 39 (2016), 3836-3854. MR3529387DOI
- Dong, Y., Liang, S., Wang, H., , Math. Meth. Appl. Sci. 42 (2019), 1999-2015. MR3937647DOI
- Dong, Y., Liu, W., Li, T., Liang, S., , J. Frankl. Inst. 354 (2017), 787-811. MR3591977DOI
- Dong, Y., Zhang, Y., Zhang, X., Design of observer-based feedback control for a class of discrete-time nonlinear systems with time-delay., Appl. Comput. Math., 13 (2014), 1, 107-121. MR3307942
- Dorato, P., Short time stability in linear time-varying system., In: Proc. IRE International Convention Record. Part 4, New York 1961, pp. 83-87.
- Karafyllis, I., , SIAM J. Control Optim. 45 (2006), 1, 320-342. MR2225308DOI
- Lin, X., Du, H., Li, S., , Appl. Math. Comput. 217 (2011), 12, 5982-5993. MR2770219DOI
- Ma, Y. C., Fu, L., Jing, Y. H., Zhang, Q. L., , Appl. Math. Comput. 261 (2015), 264-283. MR3345277DOI
- Nguyen, C. M., Pathirana, P. N., Trinh, H., , Europ. J. Control 44 (2018), 65-72. MR3907454DOI
- Nguyen, C. M., Pathirana, P. N., Trinh, H., , Int. J. Robust Nonlinear Control 28 (2018), 1366-1380. MR3756748DOI
- Nguyen, M. C., Trinh, H., , SIAM J. Control Optim 54 (2016), 3, 1585-1601. MR3509998DOI
- Song, J., He, S., , J. Frankl. Inst. 352 (2015), 8, 3250-3266. MR3369926DOI
- Stojanovic, S. B., , J. Frankl. Inst. 354 (2017), 4549-4572. MR3655782DOI
- Zhang, W., Su, H., Zhu, F., Azar, G., , Nonlinear Dyn. 79 (2015), 2, 1469-1479. MR3302781DOI
- Zhang, Z., Zhang, Z., Zhang, H., , J. Frankl. Inst. 352 (2015), 1296-1317. MR3306527DOI
- Zhang, Z., Zhang, Z., Zhang, H., Zheng, B., Karimi, H. R., , J. Frankl. Inst. 351 (2014), 3457-3476. MR3201042DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.