Robust observer-based finite-time H control designs for discrete nonlinear systems with time-varying delay

Yali Dong; Huimin Wang; Mengxiao Deng

Kybernetika (2021)

  • Issue: 1, page 102-117
  • ISSN: 0023-5954

Abstract

top
This paper investigates the problem of observer-based finite-time H control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is H finite-time bounded via observer-based control. The observer-based controller for the finite-time H control problem is developed. Finally, a numerical example illustrates the efficiency of proposed methods.

How to cite

top

Dong, Yali, Wang, Huimin, and Deng, Mengxiao. "Robust observer-based finite-time $H_{\infty }$ control designs for discrete nonlinear systems with time-varying delay." Kybernetika (2021): 102-117. <http://eudml.org/doc/297630>.

@article{Dong2021,
abstract = {This paper investigates the problem of observer-based finite-time $H_\{\infty \}$ control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is $H_\{\infty \}$ finite-time bounded via observer-based control. The observer-based controller for the finite-time $H_\{\infty \}$ control problem is developed. Finally, a numerical example illustrates the efficiency of proposed methods.},
author = {Dong, Yali, Wang, Huimin, Deng, Mengxiao},
journal = {Kybernetika},
keywords = {observer-based control; $H_\{\infty \}$ finite-time boundedness; Lyapunov–Krasovskii functional; discrete-time systems; time-varying delay},
language = {eng},
number = {1},
pages = {102-117},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust observer-based finite-time $H_\{\infty \}$ control designs for discrete nonlinear systems with time-varying delay},
url = {http://eudml.org/doc/297630},
year = {2021},
}

TY - JOUR
AU - Dong, Yali
AU - Wang, Huimin
AU - Deng, Mengxiao
TI - Robust observer-based finite-time $H_{\infty }$ control designs for discrete nonlinear systems with time-varying delay
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 102
EP - 117
AB - This paper investigates the problem of observer-based finite-time $H_{\infty }$ control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is $H_{\infty }$ finite-time bounded via observer-based control. The observer-based controller for the finite-time $H_{\infty }$ control problem is developed. Finally, a numerical example illustrates the efficiency of proposed methods.
LA - eng
KW - observer-based control; $H_{\infty }$ finite-time boundedness; Lyapunov–Krasovskii functional; discrete-time systems; time-varying delay
UR - http://eudml.org/doc/297630
ER -

References

top
  1. Amato, F., Ambrosino, R., Ariola, M., Tommasi, G. De, Pironti, A., , Automatica 107 (2019), 454-466. MR3979026DOI
  2. Amato, F., Darouach, M., Tommasi, G. De, , IEEE Trans. Automat. Control 62 (2017), 12, 6521-6528. MR3743535DOI
  3. Ahmad, S., Rehan, M., , J. Frankl. Inst. 353 (2016), 4, 903-916. MR3463288DOI
  4. Amato, F., Arioial, M., Dorato, P., , Automatica 37 (2001), 1459-1463. DOI
  5. Cheng, J., Zhu, H., Zhong, S. M., Zeng, Y., Hou, L. Y., , Int. J. Adapt. Control Signal Process. 28 (2014), 1024-1042. MR3269858DOI
  6. Dong, Y., Chen, L., Mei, S., , Int. J. Adapt. Control Signal Process. 33 (2019), 1, 527-544. MR3925377DOI
  7. Dong, Y., Li, T., Mei, S., , Math. Meth. Appl. Sci. 39 (2016), 3836-3854. MR3529387DOI
  8. Dong, Y., Liang, S., Wang, H., , Math. Meth. Appl. Sci. 42 (2019), 1999-2015. MR3937647DOI
  9. Dong, Y., Liu, W., Li, T., Liang, S., , J. Frankl. Inst. 354 (2017), 787-811. MR3591977DOI
  10. Dong, Y., Zhang, Y., Zhang, X., Design of observer-based feedback control for a class of discrete-time nonlinear systems with time-delay., Appl. Comput. Math., 13 (2014), 1, 107-121. MR3307942
  11. Dorato, P., Short time stability in linear time-varying system., In: Proc. IRE International Convention Record. Part 4, New York 1961, pp. 83-87. 
  12. Karafyllis, I., , SIAM J. Control Optim. 45 (2006), 1, 320-342. MR2225308DOI
  13. Lin, X., Du, H., Li, S., , Appl. Math. Comput. 217 (2011), 12, 5982-5993. MR2770219DOI
  14. Ma, Y. C., Fu, L., Jing, Y. H., Zhang, Q. L., , Appl. Math. Comput. 261 (2015), 264-283. MR3345277DOI
  15. Nguyen, C. M., Pathirana, P. N., Trinh, H., , Europ. J. Control 44 (2018), 65-72. MR3907454DOI
  16. Nguyen, C. M., Pathirana, P. N., Trinh, H., , Int. J. Robust Nonlinear Control 28 (2018), 1366-1380. MR3756748DOI
  17. Nguyen, M. C., Trinh, H., , SIAM J. Control Optim 54 (2016), 3, 1585-1601. MR3509998DOI
  18. Song, J., He, S., , J. Frankl. Inst. 352 (2015), 8, 3250-3266. MR3369926DOI
  19. Stojanovic, S. B., , J. Frankl. Inst. 354 (2017), 4549-4572. MR3655782DOI
  20. Zhang, W., Su, H., Zhu, F., Azar, G., , Nonlinear Dyn. 79 (2015), 2, 1469-1479. MR3302781DOI
  21. Zhang, Z., Zhang, Z., Zhang, H., , J. Frankl. Inst. 352 (2015), 1296-1317. MR3306527DOI
  22. Zhang, Z., Zhang, Z., Zhang, H., Zheng, B., Karimi, H. R., , J. Frankl. Inst. 351 (2014), 3457-3476. MR3201042DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.