Jets and the variational calculus

David J. Saunders

Communications in Mathematics (2021)

  • Issue: 1, page 91-114
  • ISSN: 1804-1388

Abstract

top
We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.

How to cite

top

Saunders, David J.. "Jets and the variational calculus." Communications in Mathematics (2021): 91-114. <http://eudml.org/doc/297658>.

@article{Saunders2021,
abstract = {We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.},
author = {Saunders, David J.},
journal = {Communications in Mathematics},
keywords = {Jets; Calculus of variations},
language = {eng},
number = {1},
pages = {91-114},
publisher = {University of Ostrava},
title = {Jets and the variational calculus},
url = {http://eudml.org/doc/297658},
year = {2021},
}

TY - JOUR
AU - Saunders, David J.
TI - Jets and the variational calculus
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
IS - 1
SP - 91
EP - 114
AB - We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.
LA - eng
KW - Jets; Calculus of variations
UR - http://eudml.org/doc/297658
ER -

References

top
  1. Anderson, I.M., The variational bicomplex, Technical report of Utah State University, 1989, available at https://ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf. (1989) 
  2. Anderson, I.M., Duchamp, T.E., 10.1016/0022-0396(84)90100-1, J. Diff. Eq., 51, 1, 1984, 1-47, (1984) MR0727029DOI10.1016/0022-0396(84)90100-1
  3. Betounes, D.E., 10.1103/PhysRevD.29.599, Phys. Rev. D, 29, 1984, 599-606, (1984) MR0734285DOI10.1103/PhysRevD.29.599
  4. Borel, É., Sur quelques points de la théorie des fonctions, Ann. scient. de l'École Norm. Sup., 3, 12, 1895, 9-55, (1895) MR1508908
  5. Carathéodory, C., Über die Variationsrechnung bei mehrfachen Integralen, Acta Szeged Sect. Scient. Mathem., 4, 1929, 193-216, (1929) 
  6. Crampin, M., Saunders, D.J., The Hilbert--Carathéodory and Poincaré--Cartan forms for higher-order multiple-integral variational problems, Houston J. Math., 30, 3, 2004, 657-689, (2004) MR2083869
  7. Do, T., The inverse problem in the calculus of variations via exterior differential systems, 2016, Ph.D. Thesis, La Trobe University, Melbourne, Australia. (2016) 
  8. Do, T., Prince, G., 10.1016/j.difgeo.2016.01.005, Diff. Geom. Appl., 45, 2016, 148-179, (2016) MR3457392DOI10.1016/j.difgeo.2016.01.005
  9. Ehresmann, C., Les prolongements d'une variété différentiable: calcul des jets, prolongement principal, C. R. Acad. Sci. Paris, 233, 1951, 598-600, (1951) MR0044198
  10. Ehresmann, C., Les prolongements d’une variété différentiable: l’espace des jets d’ordre r de V n dans V m , C. R. Acad. Sci. Paris, 233, 1951, 777-779, (1951) MR0045435
  11. Ehresmann, C., Les prolongements d'une variété différentiable: transitivité des prolongements, C. R. Acad. Sci. Paris, 233, 1951, 1081-1083, (1951) MR0045436
  12. Ehresmann, C., Les prolongements d'une variété différentiable: éléments de contact et éléments d'enveloppe, C. R. Acad. Sci. Paris, 234, 1952, 1028-1030, (1952) MR0046737
  13. Ehresmann, C., Les prolongements d'une variété différentiable: covariants différentiels et prolongements d'une structure infinitésimale, C. R. Acad. Sci. Paris, 234, 1952, 1424-1425, (1952) MR0047385
  14. Frölicher, A., Nijenhuis, A., Theory of vector valued differential forms. Part I, Ind. Math., 18, 1056, 338-360, (1056) MR0082554
  15. Goldschmidt, H., Sternberg, S., 10.5802/aif.451, Ann. Inst, Fourier, 23, 1, 1973, 203-267, (1973) MR0341531DOI10.5802/aif.451
  16. Kolář, I., Michor, P.W., Slovak, J., Natural operations in differential geometry, 1993, Springer, (1993) MR1202431
  17. Kolář, I., Natural operators related with the variational calculus, Differential Geometry and its Applications, Opava 1992, 1993, 461-472, Silesian University, Opava, (1993) MR1255562
  18. Kolář, I., Weil bundles as generalized jet space, Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 625-665, Elsevier, (2007) MR2389643
  19. Kolář, I., 10.1016/j.difgeo.2011.03.007, Diff. Geom. Appl., 29, 5, 2011, 647-652, (2011) Zbl1229.58005MR2831821DOI10.1016/j.difgeo.2011.03.007
  20. Kriegl, A., Michor, P., The Convenient Setting of Global Analysis, 1997, AMS Mathematical Surveys and Monographs 53, (1997) Zbl0889.58001MR1471480
  21. Krbek, M., Musilová, J., 10.1007/s10440-005-4980-x, Acta Appl. Math., 88, 2005, 177-199, (2005) MR2169038DOI10.1007/s10440-005-4980-x
  22. Krupka, D., 10.21136/CMJ.1977.101449, Czech. Math. J., 27, 1977, 114-118, (1977) MR2523431DOI10.21136/CMJ.1977.101449
  23. Krupka, D., Variational sequences on finite order jet spaces, Differential Geometry and its Applications, Brno 1989, 1990, 236-254, World Scientific, (1990) MR1062026
  24. Krupka, D., 10.1016/0926-2245(95)92849-Z, Diff. Geom. Appl., 5, 1995, 257-276, (1995) MR1353059DOI10.1016/0926-2245(95)92849-Z
  25. Krupka, D., Musilová, J., 10.1016/S0926-2245(98)00023-0, Diff. Geom. Appl., 9, 1998, 293-305, (1998) MR1661189DOI10.1016/S0926-2245(98)00023-0
  26. Libermann, P., Introduction to the theory of semi-holonomic jets, Arch. Math. (Brno), 33, 1997, 173-189, (1997) MR1478771
  27. Libermann, P., Charles Ehresmann's concepts in differential geometry, Geometry and Topology of Manifolds, Banach Center Publications, vol. 76, 2007, 35-50, Institute of Mathematics, Polish Academy of Sciences, Warszawa, (2007) MR2342844
  28. Manno, G., Vitolo, R., Variational sequences on finite order jets of submanifolds, Differential Geometry and its Applications, Opava, 2001, 2001, 435-447, Silesian University at Opava, (2001) MR1978797
  29. Olver, P.J., 10.1007/BF00990539, Acta Appl. Math., 31, 1993, 99-136, (1993) MR1223167DOI10.1007/BF00990539
  30. Saunders, D.J., The geometry of jet bundles, 1989, Cambridge, (1989) Zbl0665.58002MR0989588
  31. Saunders, D.J., 10.1016/0926-2245(91)90025-5, Diff. Geom. Appl., 1, 1991, 109-122, (1991) MR1244438DOI10.1016/0926-2245(91)90025-5
  32. Saunders, D.J., Jet manifolds and natural bundles, Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1037-1070, Elsevier, (2007) MR2389651
  33. Saunders, D.J., 10.1016/j.geomphys.2009.03.001, J. Geom. Phys., 59, 2009, 727-739, (2009) Zbl1168.58006MR2510165DOI10.1016/j.geomphys.2009.03.001
  34. Saunders, D.J., Horizontal forms on jet bundles, Balkan J. Geom. Appl., 15, 1, 2010, 149-154, (2010) MR2608517
  35. Saunders, D.J., 10.1016/j.difgeo.2011.11.006, Diff. Geom. Appl., 30, 1, 2012, 59-64, (2012) MR2871705DOI10.1016/j.difgeo.2011.11.006
  36. Saunders, D.J., On Lagrangians with reduced-order Euler--Lagrange equations, SIGMA, 14, 2018, 089, 13 pages, (2018) MR3846852
  37. Urban, Z., Krupka, D., 10.5486/PMD.2013.5265, Publ. Math. Debrecen, 82, 1, 2013, 59-76, (2013) MR3034368DOI10.5486/PMD.2013.5265
  38. Vitolo, R., Variational sequences, Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1117-1160, Elsevier, (2007) MR2389653
  39. Weil, A., Théorie des points proches sur les variétés différentielles, Colloque de topologie et géométrie différentielle, 1953, 111-117, Strasbourg, (1953) MR0061455

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.