Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class

Yanbo Ren; Shuang Ding

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 79-85
  • ISSN: 0011-4642

Abstract

top
We collect known and prove new necessary and sufficient conditions for the weighted weak type maximal inequality of the form Φ 1 ( λ ) ϱ ( { x X : M μ f ( x ) > λ } ) c X Φ 2 ( c | f ( x ) | ) σ ( x ) d μ ( x ) , which extends some known results.

How to cite

top

Ren, Yanbo, and Ding, Shuang. "Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class." Czechoslovak Mathematical Journal 72.1 (2022): 79-85. <http://eudml.org/doc/297660>.

@article{Ren2022,
abstract = {We collect known and prove new necessary and sufficient conditions for the weighted weak type maximal inequality of the form \[ \Phi \_\{1\} (\lambda ) \varrho ( \lbrace x\in X\colon M\_\mu f (x) > \lambda \rbrace ) \le c \int \_X \Phi \_\{2\} (c | \{f(x)\} | ) \sigma (x) \{\rm d\} \mu (x), \] which extends some known results.},
author = {Ren, Yanbo, Ding, Shuang},
journal = {Czechoslovak Mathematical Journal},
keywords = {weight; weak type inequality; Hardy-Littlewood maximal function; Orlicz class},
language = {eng},
number = {1},
pages = {79-85},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class},
url = {http://eudml.org/doc/297660},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Ren, Yanbo
AU - Ding, Shuang
TI - Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 79
EP - 85
AB - We collect known and prove new necessary and sufficient conditions for the weighted weak type maximal inequality of the form \[ \Phi _{1} (\lambda ) \varrho ( \lbrace x\in X\colon M_\mu f (x) > \lambda \rbrace ) \le c \int _X \Phi _{2} (c | {f(x)} | ) \sigma (x) {\rm d} \mu (x), \] which extends some known results.
LA - eng
KW - weight; weak type inequality; Hardy-Littlewood maximal function; Orlicz class
UR - http://eudml.org/doc/297660
ER -

References

top
  1. Bagby, R. J., 10.4064/sm-95-3-195-204, Stud. Math. 96 (1990), 195-204. (1990) Zbl0718.42018MR1060723DOI10.4064/sm-95-3-195-204
  2. Bloom, S., Kerman, R., 10.4064/sm-110-2-149-167, Stud. Math. 110 (1994), 149-167. (1994) Zbl0813.42014MR1279989DOI10.4064/sm-110-2-149-167
  3. Gallardo, D., 10.1007/BF02764902, Isr. J. Math. 67 (1989), 95-108. (1989) Zbl0683.42021MR1021364DOI10.1007/BF02764902
  4. Gogatishvili, A., Kokilashvili, V., 10.1515/GMJ.1995.361, Georgian Math. J. 2 (1995), 361-384. (1995) Zbl0836.42012MR1344301DOI10.1515/GMJ.1995.361
  5. Kerman, R. A., Torchinsky, A., 10.4064/sm-71-3-277-284, Stud. Math. 71 (1982), 277-284. (1982) Zbl0517.42030MR0667316DOI10.4064/sm-71-3-277-284
  6. Kokilashvili, V., Krbec, M., 10.1142/1367, World Scientific, Singapore (1991). (1991) Zbl0751.46021MR1156767DOI10.1142/1367
  7. Lai, Q., 10.1090/S0002-9939-1993-1123665-4, Proc. Am. Math. Soc. 118 (1993), 129-142. (1993) Zbl0783.42010MR1123665DOI10.1090/S0002-9939-1993-1123665-4
  8. Muckenhoupt, B., 10.2307/1995882, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR293384DOI10.2307/1995882
  9. Pick, L., 10.4064/sm-100-3-207-218, Stud. Math. 100 (1991), 207-218. (1991) Zbl0752.42012MR1133385DOI10.4064/sm-100-3-207-218
  10. Rao, M. M., Ren, Z. D., 10.1201/9780203910863, Pure and Applied Mathematics, Marcel Dekker 250. Marcel Dekker, New York (2002). (2002) Zbl0997.46027MR1890178DOI10.1201/9780203910863

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.