A note on the convergence rate in regularized stochastic programming
Evgueni I. Gordienko; Yury Gryazin
Kybernetika (2021)
- Issue: 1, page 38-45
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGordienko, Evgueni I., and Gryazin, Yury. "A note on the convergence rate in regularized stochastic programming." Kybernetika (2021): 38-45. <http://eudml.org/doc/297669>.
@article{Gordienko2021,
abstract = {We deal with a stochastic programming problem that can be inconsistent. To overcome the inconsistency we apply Tikhonov's regularization technique, and, using recent results on the convergence rate of empirical measures in Wasserstein metric, we treat the following two related problems: 1. A choice of regularization parameters that guarantees the convergence of the minimization procedure. 2. Estimation of the rate of convergence in probability. Considering both light and heavy tail distributions and Lipschitz objective functions (which can be unbounded), we obtain the power bounds for the convergence rate.},
author = {Gordienko, Evgueni I., Gryazin, Yury},
journal = {Kybernetika},
keywords = {stochastic programming problem; Tikhonov's regularization; Lipschitz conditions; Kantorovich metric; convergence rate},
language = {eng},
number = {1},
pages = {38-45},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A note on the convergence rate in regularized stochastic programming},
url = {http://eudml.org/doc/297669},
year = {2021},
}
TY - JOUR
AU - Gordienko, Evgueni I.
AU - Gryazin, Yury
TI - A note on the convergence rate in regularized stochastic programming
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 38
EP - 45
AB - We deal with a stochastic programming problem that can be inconsistent. To overcome the inconsistency we apply Tikhonov's regularization technique, and, using recent results on the convergence rate of empirical measures in Wasserstein metric, we treat the following two related problems: 1. A choice of regularization parameters that guarantees the convergence of the minimization procedure. 2. Estimation of the rate of convergence in probability. Considering both light and heavy tail distributions and Lipschitz objective functions (which can be unbounded), we obtain the power bounds for the convergence rate.
LA - eng
KW - stochastic programming problem; Tikhonov's regularization; Lipschitz conditions; Kantorovich metric; convergence rate
UR - http://eudml.org/doc/297669
ER -
References
top- Boissard, E., Gouic, T. Le, , Annales de l'Institut Henry Poincaré, Probabilités et Statistiques 50 (2014), 539-563. MR3189084DOI
- Devroye, L., Györfi, L., Lugosi, G., , Springer, New York 1996. MR1383093DOI
- Evgeniou, T., Poggio, T., Pontil, M., Verri, A., , Comput. Statist. Data Anal. 38 (2002), 421-432. MR1884873DOI
- Fournier, N., Guillin, A., , Probab. Theory Related Fields 162 (2015), 707-738. MR3383341DOI
- Gordienko, E., A remark on stability in prediction and filtering problems., Izv. Akad. Nank SSR Tekhn. Kibernet. 3 (1978), 202-205. MR0536708
- Gryazin, Y. A., Klibanov, M. V., Lucas, T. R., , SIAM J. Appl. Math. 62 (2001), 664-683. MR1870710DOI
- Kaňková, V., , In: Trans. 8th Prague Conf. Academia, Prague 1978, pp. 349-353. MR0536792DOI
- Kaňková, V., Empirical estimates in stochastic programming via distribution tails., Kybernetika 46 (2010), 459-471. MR2676083
- Kaňková, V., Houda, M., , Kybernetika 51 (2015), 433-456. MR3391678DOI
- Rachev, S. T., Römisch, W., , Math. Oper. Res. 27 (2002), 792-818. MR1939178DOI
- Shafieezadeh-Abadeh, S., Esfahani, P. M., Regularization via mass transportation., J. Machine Learning Res. 20 (2019), 1-68. MR3990457
- Shapiro, A., Xu, H., , Optimization 57 (2008), 395-418. MR2412074DOI
- Tikhonov, A. N., Arsenin, V. Y., Solutions of Ill-posed Problems., Winston and Sons, Washington DC 1977. MR0455365
- Vapnik, V. N., Statistical Learning Theory., Wiley and Sons, New York 1998. MR1641250
- Vapnik, V., Izmailov, R., Synergy of monotonic rules., J. Machine Learning Res. 17 (2016), 988-999. MR3555027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.