On the mean speed of convergence of empirical and occupation measures in Wasserstein distance
Emmanuel Boissard; Thibaut Le Gouic
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 539-563
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Ajtai, J. Komlos and G. Tusnády. On optimal matchings. Combinatorica4 (1984) 259–264. Zbl0562.60012MR779885
- [2] F. Barthe and C. Bordenave. Combinatorial optimization over two random point sets. Preprint, 2011. Available at arXiv:1103.2734v1. Zbl06234286MR3185927
- [3] S. G. Bobkov, I. Gentil and M. Ledoux. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl.80 (2001) 669–696. Zbl1038.35020MR1846020
- [4] E. Boissard. Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance. Electron J. Probab16 (2011) 2296–2333. Zbl1254.60014MR2861675
- [5] F. Bolley, A. Guillin and C. Villani. Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields137 (2007) 541–593. Zbl1113.60093MR2280433
- [6] F. Bolley and C. Villani. Weighted Csiszár–Kullback–Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse Math.14 (2005) 331–351. Zbl1087.60008MR2172583
- [7] P. Cattiaux, D. Chafai and A. Guillin. Central limit theorems for additive functionals of ergodic Markov diffusion processes. Preprint, 2011. Available at arXiv:1104.2198. Zbl1277.60047MR3069369
- [8] E. Del Barrio, E. Giné and C. Matrán. Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann. Probab.27 (1999) 1009–1071. Zbl0958.60012MR1698999
- [9] S. Dereich, F. Fehringer, A. Matoussi and M. Scheutzow. On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces. J. Theoret. Probab.16 (2003) 249–265. Zbl1017.60012MR1956830
- [10] H. Djellout, A. Guillin and L. Wu. Transportation cost-information inequalities for random dynamical systems and diffusions. Ann. Probab.32 (2004) 2702–2732. Zbl1061.60011MR2078555
- [11] V. Dobric and J. E. Yukich. Exact asymptotics for transportation cost in high dimensions. J. Theoret. Probab.8 (1995) 97–118. Zbl0811.60022MR1308672
- [12] R. M. Dudley. The speed of mean Glivenko–Cantelli convergence. Ann. Math. Statist.40 (1969) 40–50. Zbl0184.41401MR236977
- [13] F. Fehringer. Kodierung von Gaußmaßen. Ph.D. manuscript, 2001, available at http://d-nb.info/962880116.
- [14] N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields139 (2007) 235–283. Zbl1126.60022MR2322697
- [15] N. Gozlan and C. Léonard. Transport inequalities. A survey. Markov Process. Related Fields 16 (2010) 635–736. Zbl1229.26029MR2895086
- [16] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics 1730. Springer, Berlin, 2000. Zbl0951.60003MR1764176
- [17] S. Graf and H. Luschgy. Rates of convergence for the empirical quantization error. Ann. Probab.30 (2002) 874–897. Zbl1018.60032MR1905859
- [18] S. Graf, H. Luschgy and G. Pagès. Functional quantization and small ball probabilities for Gaussian processes. J. Theoret. Probab.16 (2003) 1047–1062. Zbl1038.60032MR2033197
- [19] J. Horowitz and R. L. Karandikar. Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math.55 (1994) 261–273. Zbl0819.60031MR1329874
- [20] A. Joulin and Y. Ollivier. Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab.38 (2010) 2418–2442. Zbl1207.65006MR2683634
- [21] J. Kuelbs and W. V. Li. Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal.116 (1993) 133–157. Zbl0799.46053MR1237989
- [22] M. Ledoux. Isoperimetry and Gaussian analysis. In Lectures on Probability Theory and Statistics (Saint-Flour, 1994) 165–294. Lecture Notes in Math. 1648. Springer, Berlin, 1996. Zbl0874.60005MR1600888
- [23] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Am. Math. Soc., Providence, RI, 2001. Zbl0995.60002MR1849347
- [24] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin, 1991. Zbl0748.60004MR1102015
- [25] W. V. Li and W. Linde. Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab.27 (1999) 1556–1578. Zbl0983.60026MR1733160
- [26] H. Luschgy and G. Pagès. Sharp asymptotics of the functional quantization problem for Gaussian processes. Ann. Probab.32 (2004) 1574–1599. Zbl1049.60029MR2060310
- [27] H. Luschgy and G. Pagès. Sharp asymptotics of the Kolmogorov entropy for Gaussian measures. J. Funct. Anal.212 (2004) 89–120. Zbl1060.60037MR2065239
- [28] K. Marton. Bounding -distance by informational divergence: A method to prove measure concentration. Ann. Probab.24 (1996) 857–866. Zbl0865.60017MR1404531
- [29] M. Talagrand. Matching random samples in many dimensions. Ann. Appl. Probab.2 (1992) 846–856. Zbl0761.60007MR1189420
- [30] A. W. Van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer, New York, 1996. Zbl0862.60002MR1385671
- [31] V. S. Varadarajan. On the convergence of sample probability distributions. Sankhyā19 (1958) 23–26. Zbl0082.34201MR94839
- [32] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. Zbl1156.53003MR2459454