On the mean speed of convergence of empirical and occupation measures in Wasserstein distance
Emmanuel Boissard; Thibaut Le Gouic
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 539-563
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBoissard, Emmanuel, and Le Gouic, Thibaut. "On the mean speed of convergence of empirical and occupation measures in Wasserstein distance." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 539-563. <http://eudml.org/doc/271944>.
@article{Boissard2014,
abstract = {In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably highlighted in the example of infinite-dimensional Gaussian measures.},
author = {Boissard, Emmanuel, Le Gouic, Thibaut},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wasserstein metrics; optimal transportation; functional quantization; transportation inequalities; Markov chains; measure theory},
language = {eng},
number = {2},
pages = {539-563},
publisher = {Gauthier-Villars},
title = {On the mean speed of convergence of empirical and occupation measures in Wasserstein distance},
url = {http://eudml.org/doc/271944},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Boissard, Emmanuel
AU - Le Gouic, Thibaut
TI - On the mean speed of convergence of empirical and occupation measures in Wasserstein distance
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 539
EP - 563
AB - In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably highlighted in the example of infinite-dimensional Gaussian measures.
LA - eng
KW - Wasserstein metrics; optimal transportation; functional quantization; transportation inequalities; Markov chains; measure theory
UR - http://eudml.org/doc/271944
ER -
References
top- [1] M. Ajtai, J. Komlos and G. Tusnády. On optimal matchings. Combinatorica4 (1984) 259–264. Zbl0562.60012MR779885
- [2] F. Barthe and C. Bordenave. Combinatorial optimization over two random point sets. Preprint, 2011. Available at arXiv:1103.2734v1. Zbl06234286MR3185927
- [3] S. G. Bobkov, I. Gentil and M. Ledoux. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl.80 (2001) 669–696. Zbl1038.35020MR1846020
- [4] E. Boissard. Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance. Electron J. Probab16 (2011) 2296–2333. Zbl1254.60014MR2861675
- [5] F. Bolley, A. Guillin and C. Villani. Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields137 (2007) 541–593. Zbl1113.60093MR2280433
- [6] F. Bolley and C. Villani. Weighted Csiszár–Kullback–Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse Math.14 (2005) 331–351. Zbl1087.60008MR2172583
- [7] P. Cattiaux, D. Chafai and A. Guillin. Central limit theorems for additive functionals of ergodic Markov diffusion processes. Preprint, 2011. Available at arXiv:1104.2198. Zbl1277.60047MR3069369
- [8] E. Del Barrio, E. Giné and C. Matrán. Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann. Probab.27 (1999) 1009–1071. Zbl0958.60012MR1698999
- [9] S. Dereich, F. Fehringer, A. Matoussi and M. Scheutzow. On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces. J. Theoret. Probab.16 (2003) 249–265. Zbl1017.60012MR1956830
- [10] H. Djellout, A. Guillin and L. Wu. Transportation cost-information inequalities for random dynamical systems and diffusions. Ann. Probab.32 (2004) 2702–2732. Zbl1061.60011MR2078555
- [11] V. Dobric and J. E. Yukich. Exact asymptotics for transportation cost in high dimensions. J. Theoret. Probab.8 (1995) 97–118. Zbl0811.60022MR1308672
- [12] R. M. Dudley. The speed of mean Glivenko–Cantelli convergence. Ann. Math. Statist.40 (1969) 40–50. Zbl0184.41401MR236977
- [13] F. Fehringer. Kodierung von Gaußmaßen. Ph.D. manuscript, 2001, available at http://d-nb.info/962880116.
- [14] N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields139 (2007) 235–283. Zbl1126.60022MR2322697
- [15] N. Gozlan and C. Léonard. Transport inequalities. A survey. Markov Process. Related Fields 16 (2010) 635–736. Zbl1229.26029MR2895086
- [16] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics 1730. Springer, Berlin, 2000. Zbl0951.60003MR1764176
- [17] S. Graf and H. Luschgy. Rates of convergence for the empirical quantization error. Ann. Probab.30 (2002) 874–897. Zbl1018.60032MR1905859
- [18] S. Graf, H. Luschgy and G. Pagès. Functional quantization and small ball probabilities for Gaussian processes. J. Theoret. Probab.16 (2003) 1047–1062. Zbl1038.60032MR2033197
- [19] J. Horowitz and R. L. Karandikar. Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math.55 (1994) 261–273. Zbl0819.60031MR1329874
- [20] A. Joulin and Y. Ollivier. Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab.38 (2010) 2418–2442. Zbl1207.65006MR2683634
- [21] J. Kuelbs and W. V. Li. Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal.116 (1993) 133–157. Zbl0799.46053MR1237989
- [22] M. Ledoux. Isoperimetry and Gaussian analysis. In Lectures on Probability Theory and Statistics (Saint-Flour, 1994) 165–294. Lecture Notes in Math. 1648. Springer, Berlin, 1996. Zbl0874.60005MR1600888
- [23] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Am. Math. Soc., Providence, RI, 2001. Zbl0995.60002MR1849347
- [24] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin, 1991. Zbl0748.60004MR1102015
- [25] W. V. Li and W. Linde. Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab.27 (1999) 1556–1578. Zbl0983.60026MR1733160
- [26] H. Luschgy and G. Pagès. Sharp asymptotics of the functional quantization problem for Gaussian processes. Ann. Probab.32 (2004) 1574–1599. Zbl1049.60029MR2060310
- [27] H. Luschgy and G. Pagès. Sharp asymptotics of the Kolmogorov entropy for Gaussian measures. J. Funct. Anal.212 (2004) 89–120. Zbl1060.60037MR2065239
- [28] K. Marton. Bounding -distance by informational divergence: A method to prove measure concentration. Ann. Probab.24 (1996) 857–866. Zbl0865.60017MR1404531
- [29] M. Talagrand. Matching random samples in many dimensions. Ann. Appl. Probab.2 (1992) 846–856. Zbl0761.60007MR1189420
- [30] A. W. Van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer, New York, 1996. Zbl0862.60002MR1385671
- [31] V. S. Varadarajan. On the convergence of sample probability distributions. Sankhyā19 (1958) 23–26. Zbl0082.34201MR94839
- [32] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. Zbl1156.53003MR2459454
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.