L p -improving properties of certain singular measures on the Heisenberg group

Pablo Rocha

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 131-140
  • ISSN: 0862-7959

Abstract

top
Let μ A be the singular measure on the Heisenberg group n supported on the graph of the quadratic function ϕ ( y ) = y t A y , where A is a 2 n × 2 n real symmetric matrix. If det ( 2 A ± J ) 0 , we prove that the operator of convolution by μ A on the right is bounded from L ( 2 n + 2 ) ( 2 n + 1 ) ( n ) to L 2 n + 2 ( n ) . We also study the type set of the measures d ν γ ( y , s ) = η ( y ) | y | - γ d μ A ( y , s ) , for 0 γ < 2 n , where η is a cut-off function around the origin on 2 n . Moreover, for γ = 0 we characterize the type set of ν 0 .

How to cite

top

Rocha, Pablo. "$L^{p}$-improving properties of certain singular measures on the Heisenberg group." Mathematica Bohemica 147.1 (2022): 131-140. <http://eudml.org/doc/297674>.

@article{Rocha2022,
abstract = {Let $\mu _A$ be the singular measure on the Heisenberg group $\mathbb \{H\}^\{n\}$ supported on the graph of the quadratic function $\varphi (y) = y^\{t\}Ay$, where $A$ is a $2n \times 2n$ real symmetric matrix. If $\det (2A \pm J) \ne 0$, we prove that the operator of convolution by $\mu _A$ on the right is bounded from $L^\{\frac\{(2n+2)\}\{(2n+1)\}\}(\mathbb \{H\}^\{n\})$ to $L^\{2n+2\}(\mathbb \{H\}^\{n\})$. We also study the type set of the measures $\{\rm d\}\nu _\{\gamma \}(y,s) = \eta (y) |y|^\{-\gamma \} \{\rm d\}\mu _\{A\}(y,s)$, for $0 \le \gamma < 2n$, where $\eta $ is a cut-off function around the origin on $\mathbb \{R\}^\{2n\}$. Moreover, for $\gamma =0$ we characterize the type set of $\nu _\{0\}$.},
author = {Rocha, Pablo},
journal = {Mathematica Bohemica},
keywords = {Heisenberg group; singular Borel measure; $L^\{p\}$-improving property},
language = {eng},
number = {1},
pages = {131-140},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L^\{p\}$-improving properties of certain singular measures on the Heisenberg group},
url = {http://eudml.org/doc/297674},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Rocha, Pablo
TI - $L^{p}$-improving properties of certain singular measures on the Heisenberg group
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 131
EP - 140
AB - Let $\mu _A$ be the singular measure on the Heisenberg group $\mathbb {H}^{n}$ supported on the graph of the quadratic function $\varphi (y) = y^{t}Ay$, where $A$ is a $2n \times 2n$ real symmetric matrix. If $\det (2A \pm J) \ne 0$, we prove that the operator of convolution by $\mu _A$ on the right is bounded from $L^{\frac{(2n+2)}{(2n+1)}}(\mathbb {H}^{n})$ to $L^{2n+2}(\mathbb {H}^{n})$. We also study the type set of the measures ${\rm d}\nu _{\gamma }(y,s) = \eta (y) |y|^{-\gamma } {\rm d}\mu _{A}(y,s)$, for $0 \le \gamma < 2n$, where $\eta $ is a cut-off function around the origin on $\mathbb {R}^{2n}$. Moreover, for $\gamma =0$ we characterize the type set of $\nu _{0}$.
LA - eng
KW - Heisenberg group; singular Borel measure; $L^{p}$-improving property
UR - http://eudml.org/doc/297674
ER -

References

top
  1. Carmo, M. P. do, 10.1007/978-1-4757-2201-7, Mathematics: Theory & Applications. Birkhäuser, Boston (1992). (1992) Zbl0752.53001MR1138207DOI10.1007/978-1-4757-2201-7
  2. Gel'fand, I. M., Shilov, G. E., 10.1090/chel/377, Academic Press, New York (1964). (1964) Zbl0115.33101MR0166596DOI10.1090/chel/377
  3. Godoy, T., Rocha, P., 10.4064/cm132-1-8, Colloq. Math. 132 (2013), 101-111. (2013) Zbl1277.43013MR3106091DOI10.4064/cm132-1-8
  4. Godoy, T., Rocha, P., 10.4064/sm8781-12-2017, Stud. Math. 245 (2019), 213-228. (2019) Zbl1412.43009MR3865682DOI10.4064/sm8781-12-2017
  5. Littman, W., 10.1090/pspum/023/9948, Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. American Mathematical Society, Providence (1973), 479-481. (1973) Zbl0263.44006MR0358443DOI10.1090/pspum/023/9948
  6. Oberlin, D. M., 10.1090/S0002-9939-1987-0866429-6, Proc. Am. Math. Soc. 99 (1987), 56-60. (1987) Zbl0613.43002MR866429DOI10.1090/S0002-9939-1987-0866429-6
  7. Pan, Y., 10.4153/CMB-1993-035-2, Can. Math. Bull. 36 (1993), 245-250. (1993) Zbl0820.43002MR1222541DOI10.4153/CMB-1993-035-2
  8. Ricci, F., L p - L q boundedness of convolution operators defined by singular measures in n , Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 237-252 Italian. (1997) Zbl0946.42006MR1477777
  9. Ricci, F., Stein, E. M., 10.1016/0022-1236(89)90057-8, J. Funct. Anal. 86 (1989), 360-389. (1989) Zbl0684.22006MR1021141DOI10.1016/0022-1236(89)90057-8
  10. Secco, S., 10.4064/sm-132-2-179-201, Stud. Math. 132 (1999), 179-201. (1999) Zbl0960.43009MR1669682DOI10.4064/sm-132-2-179-201
  11. Secco, S., L p -improving properties of measures supported on curves on the Heisenberg group. II, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 527-543. (2002) Zbl1113.42012MR1911204
  12. Stein, E. M., Shakarchi, R., Complex Analysis, Princeton Lectures in Analysis 2. Princeton University Press, Princeton (2003). (2003) Zbl1020.30001MR1976398
  13. Stein, E. M., Weiss, G., 10.1515/9781400883899, Princeton Mathematical Series. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972DOI10.1515/9781400883899

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.