-improving properties of certain singular measures on the Heisenberg group
Mathematica Bohemica (2022)
- Volume: 147, Issue: 1, page 131-140
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRocha, Pablo. "$L^{p}$-improving properties of certain singular measures on the Heisenberg group." Mathematica Bohemica 147.1 (2022): 131-140. <http://eudml.org/doc/297674>.
@article{Rocha2022,
abstract = {Let $\mu _A$ be the singular measure on the Heisenberg group $\mathbb \{H\}^\{n\}$ supported on the graph of the quadratic function $\varphi (y) = y^\{t\}Ay$, where $A$ is a $2n \times 2n$ real symmetric matrix. If $\det (2A \pm J) \ne 0$, we prove that the operator of convolution by $\mu _A$ on the right is bounded from $L^\{\frac\{(2n+2)\}\{(2n+1)\}\}(\mathbb \{H\}^\{n\})$ to $L^\{2n+2\}(\mathbb \{H\}^\{n\})$. We also study the type set of the measures $\{\rm d\}\nu _\{\gamma \}(y,s) = \eta (y) |y|^\{-\gamma \} \{\rm d\}\mu _\{A\}(y,s)$, for $0 \le \gamma < 2n$, where $\eta $ is a cut-off function around the origin on $\mathbb \{R\}^\{2n\}$. Moreover, for $\gamma =0$ we characterize the type set of $\nu _\{0\}$.},
author = {Rocha, Pablo},
journal = {Mathematica Bohemica},
keywords = {Heisenberg group; singular Borel measure; $L^\{p\}$-improving property},
language = {eng},
number = {1},
pages = {131-140},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L^\{p\}$-improving properties of certain singular measures on the Heisenberg group},
url = {http://eudml.org/doc/297674},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Rocha, Pablo
TI - $L^{p}$-improving properties of certain singular measures on the Heisenberg group
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 131
EP - 140
AB - Let $\mu _A$ be the singular measure on the Heisenberg group $\mathbb {H}^{n}$ supported on the graph of the quadratic function $\varphi (y) = y^{t}Ay$, where $A$ is a $2n \times 2n$ real symmetric matrix. If $\det (2A \pm J) \ne 0$, we prove that the operator of convolution by $\mu _A$ on the right is bounded from $L^{\frac{(2n+2)}{(2n+1)}}(\mathbb {H}^{n})$ to $L^{2n+2}(\mathbb {H}^{n})$. We also study the type set of the measures ${\rm d}\nu _{\gamma }(y,s) = \eta (y) |y|^{-\gamma } {\rm d}\mu _{A}(y,s)$, for $0 \le \gamma < 2n$, where $\eta $ is a cut-off function around the origin on $\mathbb {R}^{2n}$. Moreover, for $\gamma =0$ we characterize the type set of $\nu _{0}$.
LA - eng
KW - Heisenberg group; singular Borel measure; $L^{p}$-improving property
UR - http://eudml.org/doc/297674
ER -
References
top- Carmo, M. P. do, 10.1007/978-1-4757-2201-7, Mathematics: Theory & Applications. Birkhäuser, Boston (1992). (1992) Zbl0752.53001MR1138207DOI10.1007/978-1-4757-2201-7
- Gel'fand, I. M., Shilov, G. E., 10.1090/chel/377, Academic Press, New York (1964). (1964) Zbl0115.33101MR0166596DOI10.1090/chel/377
- Godoy, T., Rocha, P., 10.4064/cm132-1-8, Colloq. Math. 132 (2013), 101-111. (2013) Zbl1277.43013MR3106091DOI10.4064/cm132-1-8
- Godoy, T., Rocha, P., 10.4064/sm8781-12-2017, Stud. Math. 245 (2019), 213-228. (2019) Zbl1412.43009MR3865682DOI10.4064/sm8781-12-2017
- Littman, W., 10.1090/pspum/023/9948, Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. American Mathematical Society, Providence (1973), 479-481. (1973) Zbl0263.44006MR0358443DOI10.1090/pspum/023/9948
- Oberlin, D. M., 10.1090/S0002-9939-1987-0866429-6, Proc. Am. Math. Soc. 99 (1987), 56-60. (1987) Zbl0613.43002MR866429DOI10.1090/S0002-9939-1987-0866429-6
- Pan, Y., 10.4153/CMB-1993-035-2, Can. Math. Bull. 36 (1993), 245-250. (1993) Zbl0820.43002MR1222541DOI10.4153/CMB-1993-035-2
- Ricci, F., boundedness of convolution operators defined by singular measures in , Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 237-252 Italian. (1997) Zbl0946.42006MR1477777
- Ricci, F., Stein, E. M., 10.1016/0022-1236(89)90057-8, J. Funct. Anal. 86 (1989), 360-389. (1989) Zbl0684.22006MR1021141DOI10.1016/0022-1236(89)90057-8
- Secco, S., 10.4064/sm-132-2-179-201, Stud. Math. 132 (1999), 179-201. (1999) Zbl0960.43009MR1669682DOI10.4064/sm-132-2-179-201
- Secco, S., -improving properties of measures supported on curves on the Heisenberg group. II, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 527-543. (2002) Zbl1113.42012MR1911204
- Stein, E. M., Shakarchi, R., Complex Analysis, Princeton Lectures in Analysis 2. Princeton University Press, Princeton (2003). (2003) Zbl1020.30001MR1976398
- Stein, E. M., Weiss, G., 10.1515/9781400883899, Princeton Mathematical Series. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972DOI10.1515/9781400883899
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.