A tracking controller design with preview action for a class of nonlinear Lur'e systems with time-varying delays and external disturbances

Xiao Yu; Fucheng Liao

Kybernetika (2021)

  • Issue: 1, page 78-101
  • ISSN: 0023-5954

Abstract

top
In this paper, the tracking control problem for a class of discrete-time nonlinear Lur’e systems with time-varying delays and external disturbances is studied via a preview control method. First, a novel translation approach is introduced to construct the augmented error system for Lur’e systems. The output tracking problem is thereby transformed into a guaranteed cost H controller design problem. To produce an integral control action that can eliminate the static error, a discrete integrator is included. Next, a memory state feedback controller is developed, and the sufficient conditions for asymptotic stability and guaranteed cost H performance of the closed-loop system are established by applying a suitable Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) technique. Based on this, the tracking control scheme with preview action for the original system is presented. Finally, the effectiveness of our proposed control method is illustrated via a numerical example.

How to cite

top

Yu, Xiao, and Liao, Fucheng. "A tracking controller design with preview action for a class of nonlinear Lur'e systems with time-varying delays and external disturbances." Kybernetika (2021): 78-101. <http://eudml.org/doc/297689>.

@article{Yu2021,
abstract = {In this paper, the tracking control problem for a class of discrete-time nonlinear Lur’e systems with time-varying delays and external disturbances is studied via a preview control method. First, a novel translation approach is introduced to construct the augmented error system for Lur’e systems. The output tracking problem is thereby transformed into a guaranteed cost $H_\infty $ controller design problem. To produce an integral control action that can eliminate the static error, a discrete integrator is included. Next, a memory state feedback controller is developed, and the sufficient conditions for asymptotic stability and guaranteed cost $H_\infty $ performance of the closed-loop system are established by applying a suitable Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) technique. Based on this, the tracking control scheme with preview action for the original system is presented. Finally, the effectiveness of our proposed control method is illustrated via a numerical example.},
author = {Yu, Xiao, Liao, Fucheng},
journal = {Kybernetika},
keywords = {tracking control; preview control; nonlinear Lur'e system; linear matrix inequality},
language = {eng},
number = {1},
pages = {78-101},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A tracking controller design with preview action for a class of nonlinear Lur'e systems with time-varying delays and external disturbances},
url = {http://eudml.org/doc/297689},
year = {2021},
}

TY - JOUR
AU - Yu, Xiao
AU - Liao, Fucheng
TI - A tracking controller design with preview action for a class of nonlinear Lur'e systems with time-varying delays and external disturbances
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 78
EP - 101
AB - In this paper, the tracking control problem for a class of discrete-time nonlinear Lur’e systems with time-varying delays and external disturbances is studied via a preview control method. First, a novel translation approach is introduced to construct the augmented error system for Lur’e systems. The output tracking problem is thereby transformed into a guaranteed cost $H_\infty $ controller design problem. To produce an integral control action that can eliminate the static error, a discrete integrator is included. Next, a memory state feedback controller is developed, and the sufficient conditions for asymptotic stability and guaranteed cost $H_\infty $ performance of the closed-loop system are established by applying a suitable Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) technique. Based on this, the tracking control scheme with preview action for the original system is presented. Finally, the effectiveness of our proposed control method is illustrated via a numerical example.
LA - eng
KW - tracking control; preview control; nonlinear Lur'e system; linear matrix inequality
UR - http://eudml.org/doc/297689
ER -

References

top
  1. Açikmeşe, B., Corless, M., 10.1016/j.sysconle.2007.06.018, Systems Control Lett. 57 (2008), 1, 78-94. MR2365307DOI10.1016/j.sysconle.2007.06.018
  2. Birla, N., Swarup, A., 10.1002/oca.2106, Optim. Control Appl. Meth. 36(2015), 2, 241-268. MR3322176DOI10.1002/oca.2106
  3. Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnan, V., 10.1137/1.9781611970777, SIAM, Philadelphia, 1994. Zbl0816.93004MR1284712DOI10.1137/1.9781611970777
  4. Cao, J., Sivasamy, R., Rakkiyappan, R., 10.1007/s00034-015-0105-6, Circuits Syst. Signal Process. 35 (2016), 3, 811-835. MR3459136DOI10.1007/s00034-015-0105-6
  5. Chen, J., Park, J. H., 10.1016/j.amc.2020.125060, Appl. Math. Comput. 375 (2020), 15, 125060. MR4064782DOI10.1016/j.amc.2020.125060
  6. Chua, L., Yang, L., 10.1109/31.7600, IEEE Trans. Circuits Syst. 35 (1988), 10, 1257-1272. MR0960777DOI10.1109/31.7600
  7. Delellis, P., Bernardo, M. di, Garofalo, F., 10.1109/tcsi.2013.2252714, IEEE Trans. Circuits Syst. -I: Reg. Papers 60 (2013), 11, 3033-3042. DOI10.1109/tcsi.2013.2252714
  8. Guzelis, C., Chua, L., 10.1002/cta.4490210102, Int. J. Circuit Theory Appl. 21 (1993), 1, 1-33. DOI10.1002/cta.4490210102
  9. Gyurkovics, E., 10.1080/00207179.2016.1148270, Int. J. Control 89 (2016), 10, 2073-2082. MR3568289DOI10.1080/00207179.2016.1148270
  10. Huang, H., Feng, G., Cao, J., 10.1007/s11071-008-9454-z, Nonlinear Dyn. 57 (2009), 441-453. MR2520223DOI10.1007/s11071-008-9454-z
  11. Katayama, T., Hirono, T., 10.1080/00207178708933740, Int. J. Control 45 (1987), 2, 407-420. DOI10.1080/00207178708933740
  12. Katayama, T., Ohki, T., Inoue, T., Kato, T., 10.1080/0020718508961156, Int. J. Control 41 (1985), 3, 677-699. MR0791513DOI10.1080/0020718508961156
  13. Khalil, H. K., Nonlinear Systems., Prentice Hall: Upper Saddle River, New Jersey, 2002. Zbl1194.93083
  14. Kim, K. K. K., Braatz, R. D., 10.1002/rnc.3003, Int. J. Robust Nonlinear Control 24 (2014), 16, 2458-2472. MR3272002DOI10.1002/rnc.3003
  15. Kim, K. K. K., Braatz, R. D., 10.1002/oca.2241, Optim. Control Appl. Meth. 38 (2017), 1, 36-58. MR3608561DOI10.1002/oca.2241
  16. Kojima, A., 10.1109/tac.2014.2354911, IEEE Trans. Autom. Control 60 (2015), 2, 404-419. MR3310167DOI10.1109/tac.2014.2354911
  17. Lee, T. H., Park, J. H., 10.1016/j.nahs.2016.11.006, Nonlinear Anal. Hybrid Syst.24 (2017), 132-145. MR3624527DOI10.1016/j.nahs.2016.11.006
  18. Li, C., Chen, L., Aihara, K., 10.1088/1478-3975/3/1/004, Phys. Biol. 3 (2006), 1, 37-44. DOI10.1088/1478-3975/3/1/004
  19. Li, Z., Duan, Z., Chen, G., 10.1080/00207179.2010.546882, Int. J. Control 84 (2011), 2, 216-227. MR2783574DOI10.1080/00207179.2010.546882
  20. Liao, F., Cao, M., Hu, Z., An, P., 10.1080/00207179.2012.695804, Int. J. Control 85 (2012), 10, 1616-1624. MR2972724DOI10.1080/00207179.2012.695804
  21. Liao, F., Ren, Z., Tomizuka, M., Wu, J., 10.1080/00207179.2014.996769, Int. J. Control 88 (2015), 6, 1142-1149. MR3337040DOI10.1080/00207179.2014.996769
  22. Liu, Y., Lee, S.M., 10.1007/s11071-016-2737-x, Nonlinear Dyn. 85 (2016), 2, 981-992. MR3511417DOI10.1007/s11071-016-2737-x
  23. Liu, Y., Lee, S. M., 10.1016/j.neucom.2015.12.058, Neurocomputing 189 (2016), 66-71. DOI10.1016/j.neucom.2015.12.058
  24. Liu, M., Li, Z., 10.1049/iet-cta.2016.1205, IET Control Theory Appl. 11 (2017), 6, 877-882. MR3699768DOI10.1049/iet-cta.2016.1205
  25. Liu, W., Wang, Y., 10.1016/j.isatra.2016.07.005, ISA Trans. 65 (2016), 1-8. MR3388946DOI10.1016/j.isatra.2016.07.005
  26. Madan, R. N., 10.1142/9789812798855_bmatter, World Scientific, 1993. MR1321374DOI10.1142/9789812798855_bmatter
  27. Matsumoto, T., 10.1109/tcs.1984.1085459, IEEE Trans. Circuits Syst. CAS 31 (1984), 12, 1055-1058. MR0764274DOI10.1109/tcs.1984.1085459
  28. Nasiri, A., Nguang, S. K., Swain, A., Almakhles, D. J., 10.1049/iet-cta.2015.0750, IET Control Theory Appl. 10 (2016), 5, 545-553. MR3497117DOI10.1049/iet-cta.2015.0750
  29. Park, J. H., Ji, D. H., Won, S. C., Lee, S. M., Choi, S. J., 10.1016/j.physleta.2009.08.018, Phys. Lett. A 373 (2009), 41, 3734-3740. MR2569017DOI10.1016/j.physleta.2009.08.018
  30. Park, J. H., Lee, T. H., Liu, Y., Chen, J., 10.1007/978-981-13-9254-2, Springer-Nature, 2019. MR3969950DOI10.1007/978-981-13-9254-2
  31. Sheridan, T. B., 10.1109/thfe.1966.232329, IEEE Trans. on Human Factors in Electronics HFE 7 (1966), 2, 91-102. DOI10.1109/thfe.1966.232329
  32. Song, Q., Liu, F., Cao, J., Lu, J., 10.1049/iet-cta.2013.0422, IET Control Theory Appl. 8 (2014), 2, 131-138. MR3184494DOI10.1049/iet-cta.2013.0422
  33. Takaba, K., 10.1002/(sici)1099-1239(200002)10:2<101::aid-rnc465>3.0.co;2-9, Int. J. Robust Nonlinear Control 10 (2000), 2, 101-111. MR1740969DOI10.1002/(sici)1099-1239(200002)10:2<101::aid-rnc465>3.0.co;2-9
  34. Tang, Z., Park, J. H., Wang, Y., Zheng, W. X., 10.1109/tsmc.2019.2943933, IEEE Trans. Syst., Man, Cybern., Syst. 2019. DOI10.1109/tsmc.2019.2943933
  35. Tomizuka, M., Rosenthal, D. E., 10.1115/1.3426416, ASME J. Dyn. Sys. Meas. Control 101 (1979), 2, 172-178. DOI10.1115/1.3426416
  36. Tsuchiya, T., Egami, T., Digital Preview and Predictive Control., Beijing Science and Technology, Beijing, 1994. 
  37. Xia, J., Park, J. H., Lee, T. H., Zhang, B., H tracking of uncertain stochastic time-delay systems: memory state-feedback controller design., Appl. Math. Comput. 249 (2014), 356-370. MR3279427
  38. Yin, C., Zhong, S., Liu, X., 10.1007/s10957-011-9857-8, J. Optim. Theory Appl. 151 (2011), 1, 81-99. MR2836466DOI10.1007/s10957-011-9857-8
  39. Yu, X., Li, L., 10.1186/s13662-020-02753-3, Adv. Differ. Equ. 293 (2020), 1-17. MR4111777DOI10.1186/s13662-020-02753-3
  40. Yu, X., Liao, F., 10.1177/0142331218808348, Trans. Inst. Meas. Control 41 (2019), 10, 2726-2737. DOI10.1177/0142331218808348
  41. Zhang, F., Trentelman, H. L., Feng, G., Scherpen, J. M. A., 10.1016/j.ejcon.2018.09.015, Eur. J. Control 44(2018), 15-26. MR3907449DOI10.1016/j.ejcon.2018.09.015
  42. Zhao, Y., Duan, Z., Wen, G., 10.1049/iet-cta.2013.0095, IET Control Theory Appl. 7 (2013), 9, 1249-1260. MR3100552DOI10.1049/iet-cta.2013.0095
  43. Zhen, Z., Research development in preview control theory and applications., Acta Autom. Sin. 42 (2016), 2, 172-188. 
  44. Zhu, X., Zhang, H., Xi, J., 10.1177/0954407014546431, Proc. IMechE. Part D: J. Automobile Engineering 229 (2015), 4, 424-436. DOI10.1177/0954407014546431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.