Nontrivial solutions to boundary value problems for semilinear Δ γ -differential equations

Duong Trong Luyen

Applications of Mathematics (2021)

  • Volume: 66, Issue: 4, page 461-478
  • ISSN: 0862-7940

Abstract

top
In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: - Δ γ u = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a bounded domain with smooth boundary in N , Ω { x j = 0 } for some j , Δ γ is a subelliptic linear operator of the type Δ γ : = j = 1 N x j ( γ j 2 x j ) , x j : = x j , N 2 , where γ ( x ) = ( γ 1 ( x ) , γ 2 ( x ) , , γ N ( x ) ) satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity f ( x , ξ ) is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.

How to cite

top

Luyen, Duong Trong. "Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations." Applications of Mathematics 66.4 (2021): 461-478. <http://eudml.org/doc/297746>.

@article{Luyen2021,
abstract = {In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: \[ -\Delta \_\gamma u=f(x,u) \ \text\{in\} \ \Omega , \quad u=0 \ \text\{on\} \ \partial \Omega , \] where $\Omega $ is a bounded domain with smooth boundary in $\mathbb \{R\}^N$, $\Omega \cap \lbrace x_j=0\rbrace \ne \emptyset $ for some $j$, $\Delta _\{\gamma \}$ is a subelliptic linear operator of the type \[ \Delta \_\gamma : =\sum \_\{j=1\}^\{N\}\partial \_\{x\_j\} (\gamma \_j^2 \partial \_\{x\_j\} ), \quad \partial \_\{x\_j\}:=\frac\{\partial \}\{\partial x\_\{j\}\}, \quad N\ge 2, \] where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.},
author = {Luyen, Duong Trong},
journal = {Applications of Mathematics},
keywords = {$\Delta _\gamma $-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem},
language = {eng},
number = {4},
pages = {461-478},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations},
url = {http://eudml.org/doc/297746},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Luyen, Duong Trong
TI - Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 461
EP - 478
AB - In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: \[ -\Delta _\gamma u=f(x,u) \ \text{in} \ \Omega , \quad u=0 \ \text{on} \ \partial \Omega , \] where $\Omega $ is a bounded domain with smooth boundary in $\mathbb {R}^N$, $\Omega \cap \lbrace x_j=0\rbrace \ne \emptyset $ for some $j$, $\Delta _{\gamma }$ is a subelliptic linear operator of the type \[ \Delta _\gamma : =\sum _{j=1}^{N}\partial _{x_j} (\gamma _j^2 \partial _{x_j} ), \quad \partial _{x_j}:=\frac{\partial }{\partial x_{j}}, \quad N\ge 2, \] where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.
LA - eng
KW - $\Delta _\gamma $-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem
UR - http://eudml.org/doc/297746
ER -

References

top
  1. Ambrosetti, A., Malchiodi, A., 10.1017/CBO9780511618260, Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). (2007) Zbl1125.47052MR2292344DOI10.1017/CBO9780511618260
  2. Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
  3. Anh, C. T., My, B. K., 10.1080/17476933.2015.1068762, Complex Var. Elliptic Equ. 61 (2016), 137-150. (2016) Zbl1336.35164MR3428858DOI10.1080/17476933.2015.1068762
  4. Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
  5. Cerami, G., An existence criterion for the critical points on unbounded manifolds, Rend., Sci. Mat. Fis. Chim. Geol. 112 (1978), 332-336 Italian. (1978) Zbl0436.58006MR0581298
  6. Cerami, G., 10.1007/BF01795391, Ann. Mat. Pura Appl., IV. Ser. 124 (1980), 161-179 Italian. (1980) Zbl0441.35054MR0591554DOI10.1007/BF01795391
  7. Franchi, B., Lanconelli, E., 10.1080/03605308408820362, Commun. Partial Differ. Equations 9 (1984), 1237-1264. (1984) Zbl0589.46023MR0764663DOI10.1080/03605308408820362
  8. Garofalo, N., Lanconelli, E., 10.1512/iumj.1992.41.41005, Indiana Univ. Math. J. 41 (1992), 71-98. (1992) Zbl0793.35037MR1160903DOI10.1512/iumj.1992.41.41005
  9. Grushin, V. V., 10.1070/SM1970v012n03ABEH000931, Math. USSR, Sb. 12 (1970), 458-476 translation from Mat. Sb. (N.S.) 83 1970 456-473. (1970) Zbl0252.35057MR0279436DOI10.1070/SM1970v012n03ABEH000931
  10. Jerison, D. S., 10.1016/0022-1236(81)90031-8, J. Funt. Anal. 43 (1981), 224-257. (1981) Zbl0493.58022MR0633978DOI10.1016/0022-1236(81)90031-8
  11. Jerison, D. S., Lee, J. M., 10.4310/jdg/1214440849, J. Diff. Geom. 25 (1987), 167-197. (1987) Zbl0661.32026MR0880182DOI10.4310/jdg/1214440849
  12. Kogoj, A. E., Lanconelli, E., 10.1016/j.na.2011.10.007, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 4637-4649. (2012) Zbl1260.35020MR2927124DOI10.1016/j.na.2011.10.007
  13. Kogoj, A. E., Lanconelli, E., Linear and semilinear problems involving Δ λ -Laplacians, Electron. J. Differ. Equ. 2018 (2018), Article ID 25, 167-178. (2018) Zbl1400.35130MR3883635
  14. Lam, N., Lu, G., 10.1515/ans-2013-0203, Adv. Nonlinear Stud. 13 (2013), 289-308. (2013) Zbl1283.35049MR3076792DOI10.1515/ans-2013-0203
  15. Lam, N., Lu, G., 10.1007/s12220-012-9330-4, J. Geom. Anal. 24 (2014), 118-143. (2014) Zbl1305.35069MR3145918DOI10.1007/s12220-012-9330-4
  16. Li, G., Wang, C., 10.5186/aasfm.2011.3627, Ann. Acad. Sci. Fenn., Math. 36 (2011), 461-480. (2011) Zbl1234.35095MR2865507DOI10.5186/aasfm.2011.3627
  17. Li, S., Wu, S., Zhou, H.-S., 10.1006/jdeq.2001.4167, J. Differ. Equations 185 (2002), 200-224. (2002) Zbl1032.35072MR1935276DOI10.1006/jdeq.2001.4167
  18. Liu, S., 10.1016/j.na.2010.04.016, Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 788-795. (2010) Zbl1192.35074MR2653749DOI10.1016/j.na.2010.04.016
  19. Liu, Z., Wang, Z.-Q., 10.1515/ans-2004-0411, Adv. Nonlinear Stud. 4 (2004), 563-574. (2004) Zbl1113.35048MR2100913DOI10.1515/ans-2004-0411
  20. Luyen, D. T., 10.1134/S0001434617050078, Math. Notes 101 (2017), 815-823. (2017) Zbl1375.35200MR3669606DOI10.1134/S0001434617050078
  21. Luyen, D. T., 10.14232/ejqtde.2019.1.78, Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 78, 12 pages. (2019) Zbl07174921MR4028910DOI10.14232/ejqtde.2019.1.78
  22. Luyen, D. T., Tri, N. M., 10.1134/S0001434615010101, Math. Notes 97 (2015), 73-84. (2015) Zbl1325.35051MR3394492DOI10.1134/S0001434615010101
  23. Luyen, D. T., Tri, N. M., 10.4064/ap3831-3-2016, Ann. Pol. Math. 117 (2016), 141-161. (2016) Zbl1356.35057MR3539074DOI10.4064/ap3831-3-2016
  24. Luyen, D. T., Tri, N. M., 10.1134/S0037446616040078, Sib. Math. J. 57 (2016), 632-649 translation from Sib. Mat. Zh. 57 2016 809-829. (2016) Zbl1364.35045MR3601331DOI10.1134/S0037446616040078
  25. Luyen, D. T., Tri, N. M., 10.1016/j.jmaa.2018.01.016, J. Math. Anal. Appl. 461 (2018), 1271-1286. (2018) Zbl1392.35146MR3765489DOI10.1016/j.jmaa.2018.01.016
  26. Luyen, D. T., Tri, N. M., 10.1080/17476933.2020.1730824, Complex Var. Elliptic Equ. 65 (2020), 2135-2150. (2020) MR4170200DOI10.1080/17476933.2020.1730824
  27. Miyagaki, O. H., Souto, M. A. S., 10.1016/j.jde.2008.02.035, J. Differ. Equations 245 (2008), 3628-3638. (2008) Zbl1158.35400MR2462696DOI10.1016/j.jde.2008.02.035
  28. Rabinowitz, P. H., 10.1090/cbms/065, Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
  29. Schechter, M., Zou, W., 10.2140/pjm.2004.214.145, Pac. J. Math. 214 (2004), 145-160. (2004) Zbl1134.35346MR2039130DOI10.2140/pjm.2004.214.145
  30. Thuy, N. T. C., Tri, N. M., Some existence and nonexistence results for boundary value problems for semilinear elliptic degenerate operators, Russ. J. Math. Phys. 9 (2002), 365-370. (2002) Zbl1104.35306MR1965388
  31. Thuy, P. T., Tri, N. M., 10.1007/s00030-011-0128-z, NoDEA, Nonlinear Differ. Equ. Appl. 19 (2012), 279-298. (2012) Zbl1247.35028MR2926298DOI10.1007/s00030-011-0128-z
  32. Thuy, P. T., Tri, N. M., 10.1007/s00030-012-0205-y, NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1213-1224. (2013) Zbl1268.35018MR3057173DOI10.1007/s00030-012-0205-y
  33. Tri, N. M., Critical Sobolev exponent for degenerate elliptic operators, Acta Math. Vietnam. 23 (1998), 83-94. (1998) Zbl0910.35060MR1628086
  34. Tri, N. M., 10.1007/BF02316146, Math. Notes 63 (1998), 84-93 translation from Mat. Zametki 63 1998 95-105. (1998) Zbl0913.35049MR1631852DOI10.1007/BF02316146
  35. Tri, N. M., Semilinear Degenerate Elliptic Differential Equations: Local and Global Theories, Lambert Academic Publishing, Saarbrücken (2010). (2010) 
  36. Tri, N. M., Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators, Publ. House Sci. Technology, Hanoi (2014). (2014) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.