Nontrivial solutions to boundary value problems for semilinear -differential equations
Applications of Mathematics (2021)
- Volume: 66, Issue: 4, page 461-478
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLuyen, Duong Trong. "Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations." Applications of Mathematics 66.4 (2021): 461-478. <http://eudml.org/doc/297746>.
@article{Luyen2021,
abstract = {In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: \[ -\Delta \_\gamma u=f(x,u) \ \text\{in\} \ \Omega , \quad u=0 \ \text\{on\} \ \partial \Omega , \]
where $\Omega $ is a bounded domain with smooth boundary in $\mathbb \{R\}^N$, $\Omega \cap \lbrace x_j=0\rbrace \ne \emptyset $ for some $j$, $\Delta _\{\gamma \}$ is a subelliptic linear operator of the type \[ \Delta \_\gamma : =\sum \_\{j=1\}^\{N\}\partial \_\{x\_j\} (\gamma \_j^2 \partial \_\{x\_j\} ), \quad \partial \_\{x\_j\}:=\frac\{\partial \}\{\partial x\_\{j\}\}, \quad N\ge 2, \]
where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.},
author = {Luyen, Duong Trong},
journal = {Applications of Mathematics},
keywords = {$\Delta _\gamma $-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem},
language = {eng},
number = {4},
pages = {461-478},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations},
url = {http://eudml.org/doc/297746},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Luyen, Duong Trong
TI - Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 461
EP - 478
AB - In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: \[ -\Delta _\gamma u=f(x,u) \ \text{in} \ \Omega , \quad u=0 \ \text{on} \ \partial \Omega , \]
where $\Omega $ is a bounded domain with smooth boundary in $\mathbb {R}^N$, $\Omega \cap \lbrace x_j=0\rbrace \ne \emptyset $ for some $j$, $\Delta _{\gamma }$ is a subelliptic linear operator of the type \[ \Delta _\gamma : =\sum _{j=1}^{N}\partial _{x_j} (\gamma _j^2 \partial _{x_j} ), \quad \partial _{x_j}:=\frac{\partial }{\partial x_{j}}, \quad N\ge 2, \]
where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.
LA - eng
KW - $\Delta _\gamma $-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem
UR - http://eudml.org/doc/297746
ER -
References
top- Ambrosetti, A., Malchiodi, A., 10.1017/CBO9780511618260, Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). (2007) Zbl1125.47052MR2292344DOI10.1017/CBO9780511618260
- Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
- Anh, C. T., My, B. K., 10.1080/17476933.2015.1068762, Complex Var. Elliptic Equ. 61 (2016), 137-150. (2016) Zbl1336.35164MR3428858DOI10.1080/17476933.2015.1068762
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Cerami, G., An existence criterion for the critical points on unbounded manifolds, Rend., Sci. Mat. Fis. Chim. Geol. 112 (1978), 332-336 Italian. (1978) Zbl0436.58006MR0581298
- Cerami, G., 10.1007/BF01795391, Ann. Mat. Pura Appl., IV. Ser. 124 (1980), 161-179 Italian. (1980) Zbl0441.35054MR0591554DOI10.1007/BF01795391
- Franchi, B., Lanconelli, E., 10.1080/03605308408820362, Commun. Partial Differ. Equations 9 (1984), 1237-1264. (1984) Zbl0589.46023MR0764663DOI10.1080/03605308408820362
- Garofalo, N., Lanconelli, E., 10.1512/iumj.1992.41.41005, Indiana Univ. Math. J. 41 (1992), 71-98. (1992) Zbl0793.35037MR1160903DOI10.1512/iumj.1992.41.41005
- Grushin, V. V., 10.1070/SM1970v012n03ABEH000931, Math. USSR, Sb. 12 (1970), 458-476 translation from Mat. Sb. (N.S.) 83 1970 456-473. (1970) Zbl0252.35057MR0279436DOI10.1070/SM1970v012n03ABEH000931
- Jerison, D. S., 10.1016/0022-1236(81)90031-8, J. Funt. Anal. 43 (1981), 224-257. (1981) Zbl0493.58022MR0633978DOI10.1016/0022-1236(81)90031-8
- Jerison, D. S., Lee, J. M., 10.4310/jdg/1214440849, J. Diff. Geom. 25 (1987), 167-197. (1987) Zbl0661.32026MR0880182DOI10.4310/jdg/1214440849
- Kogoj, A. E., Lanconelli, E., 10.1016/j.na.2011.10.007, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 4637-4649. (2012) Zbl1260.35020MR2927124DOI10.1016/j.na.2011.10.007
- Kogoj, A. E., Lanconelli, E., Linear and semilinear problems involving -Laplacians, Electron. J. Differ. Equ. 2018 (2018), Article ID 25, 167-178. (2018) Zbl1400.35130MR3883635
- Lam, N., Lu, G., 10.1515/ans-2013-0203, Adv. Nonlinear Stud. 13 (2013), 289-308. (2013) Zbl1283.35049MR3076792DOI10.1515/ans-2013-0203
- Lam, N., Lu, G., 10.1007/s12220-012-9330-4, J. Geom. Anal. 24 (2014), 118-143. (2014) Zbl1305.35069MR3145918DOI10.1007/s12220-012-9330-4
- Li, G., Wang, C., 10.5186/aasfm.2011.3627, Ann. Acad. Sci. Fenn., Math. 36 (2011), 461-480. (2011) Zbl1234.35095MR2865507DOI10.5186/aasfm.2011.3627
- Li, S., Wu, S., Zhou, H.-S., 10.1006/jdeq.2001.4167, J. Differ. Equations 185 (2002), 200-224. (2002) Zbl1032.35072MR1935276DOI10.1006/jdeq.2001.4167
- Liu, S., 10.1016/j.na.2010.04.016, Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 788-795. (2010) Zbl1192.35074MR2653749DOI10.1016/j.na.2010.04.016
- Liu, Z., Wang, Z.-Q., 10.1515/ans-2004-0411, Adv. Nonlinear Stud. 4 (2004), 563-574. (2004) Zbl1113.35048MR2100913DOI10.1515/ans-2004-0411
- Luyen, D. T., 10.1134/S0001434617050078, Math. Notes 101 (2017), 815-823. (2017) Zbl1375.35200MR3669606DOI10.1134/S0001434617050078
- Luyen, D. T., 10.14232/ejqtde.2019.1.78, Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 78, 12 pages. (2019) Zbl07174921MR4028910DOI10.14232/ejqtde.2019.1.78
- Luyen, D. T., Tri, N. M., 10.1134/S0001434615010101, Math. Notes 97 (2015), 73-84. (2015) Zbl1325.35051MR3394492DOI10.1134/S0001434615010101
- Luyen, D. T., Tri, N. M., 10.4064/ap3831-3-2016, Ann. Pol. Math. 117 (2016), 141-161. (2016) Zbl1356.35057MR3539074DOI10.4064/ap3831-3-2016
- Luyen, D. T., Tri, N. M., 10.1134/S0037446616040078, Sib. Math. J. 57 (2016), 632-649 translation from Sib. Mat. Zh. 57 2016 809-829. (2016) Zbl1364.35045MR3601331DOI10.1134/S0037446616040078
- Luyen, D. T., Tri, N. M., 10.1016/j.jmaa.2018.01.016, J. Math. Anal. Appl. 461 (2018), 1271-1286. (2018) Zbl1392.35146MR3765489DOI10.1016/j.jmaa.2018.01.016
- Luyen, D. T., Tri, N. M., 10.1080/17476933.2020.1730824, Complex Var. Elliptic Equ. 65 (2020), 2135-2150. (2020) MR4170200DOI10.1080/17476933.2020.1730824
- Miyagaki, O. H., Souto, M. A. S., 10.1016/j.jde.2008.02.035, J. Differ. Equations 245 (2008), 3628-3638. (2008) Zbl1158.35400MR2462696DOI10.1016/j.jde.2008.02.035
- Rabinowitz, P. H., 10.1090/cbms/065, Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
- Schechter, M., Zou, W., 10.2140/pjm.2004.214.145, Pac. J. Math. 214 (2004), 145-160. (2004) Zbl1134.35346MR2039130DOI10.2140/pjm.2004.214.145
- Thuy, N. T. C., Tri, N. M., Some existence and nonexistence results for boundary value problems for semilinear elliptic degenerate operators, Russ. J. Math. Phys. 9 (2002), 365-370. (2002) Zbl1104.35306MR1965388
- Thuy, P. T., Tri, N. M., 10.1007/s00030-011-0128-z, NoDEA, Nonlinear Differ. Equ. Appl. 19 (2012), 279-298. (2012) Zbl1247.35028MR2926298DOI10.1007/s00030-011-0128-z
- Thuy, P. T., Tri, N. M., 10.1007/s00030-012-0205-y, NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1213-1224. (2013) Zbl1268.35018MR3057173DOI10.1007/s00030-012-0205-y
- Tri, N. M., Critical Sobolev exponent for degenerate elliptic operators, Acta Math. Vietnam. 23 (1998), 83-94. (1998) Zbl0910.35060MR1628086
- Tri, N. M., 10.1007/BF02316146, Math. Notes 63 (1998), 84-93 translation from Mat. Zametki 63 1998 95-105. (1998) Zbl0913.35049MR1631852DOI10.1007/BF02316146
- Tri, N. M., Semilinear Degenerate Elliptic Differential Equations: Local and Global Theories, Lambert Academic Publishing, Saarbrücken (2010). (2010)
- Tri, N. M., Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators, Publ. House Sci. Technology, Hanoi (2014). (2014)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.