Morse-Bott functions with two critical values on a surface
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 865-880
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Banyaga, A., Hurtubise, D. E., 10.1016/S0723-0869(04)80014-8, Expo. Math. 22 (2004), 365-373. (2004) Zbl1078.57031MR2075744DOI10.1016/S0723-0869(04)80014-8
- Banyaga, A., Hurtubise, D. E., 10.1017/S0143385708000928, Ergodic Theory Dyn. Syst. 29 (2009), 1693-1703. (2009) Zbl1186.37038MR2563088DOI10.1017/S0143385708000928
- Duan, H., Rees, E. G., Functions whose critical set consists of two connected manifolds, Bol. Soc. Mat. Mex., II. Ser. 37 (1992), 139-149. (1992) Zbl0867.57025MR1317568
- Gelbukh, I., 10.1007/s10587-013-0034-0, Czech. Math. J. 63 (2013), 515-528. (2013) Zbl1289.57009MR3073975DOI10.1007/s10587-013-0034-0
- Gelbukh, I., 10.1515/ms-2016-0298, Math. Slovaca 67 (2017), 645-656. (2017) Zbl1424.14003MR3660746DOI10.1515/ms-2016-0298
- Gelbukh, I., 10.2298/FIL1907031G, Filomat 33 (2019), 2031-2049. (2019) MR4036359DOI10.2298/FIL1907031G
- Hurtubise, D. E., Three approaches to Morse-Bott homology, Afr. Diaspora J. Math. 14 (2012), 145-177. (2012) Zbl1311.57043MR3093241
- Jiang, M.-Y., 10.12775/TMNA.1999.007, Topol. Methods Nonlinear Anal. 13 (1999), 147-161. (1999) Zbl0940.57034MR1716589DOI10.12775/TMNA.1999.007
- Kudryavtseva, E. A., 10.1070/SM1999v190n03ABEH000392, Sb. Math. 190 (1999), 349-405. (1999) Zbl0941.57026MR1700994DOI10.1070/SM1999v190n03ABEH000392
- Leininger, C. J., Reid, A. W., 10.2140/agt.2002.2.37, Algebr. Geom. Topol. 2 (2002), 37-50. (2002) Zbl0983.57001MR1885215DOI10.2140/agt.2002.2.37
- Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S., 10.1090/conm/675/13590, Real and Complex Singularities Contemporary Mathematics 675. American Mathematical Society, Providence (2016), 165-179. (2016) Zbl1362.37078MR3578724DOI10.1090/conm/675/13590
- Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S., 10.12775/TMNA.2017.051, Topol. Methods Nonlinear Anal. 51 (2018), 183-213. (2018) Zbl1393.37057MR3784742DOI10.12775/TMNA.2017.051
- Milnor, J. W., 10.1515/9781400881802, Annals of Mathematics Studies 51. Princeton University Press, Princeton (1963). (1963) Zbl0108.10401MR0163331DOI10.1515/9781400881802
- Nicolaescu, L. I., 10.1007/978-1-4614-1105-5, Universitext. Springer, Berlin (2011). (2011) Zbl1238.57001MR2883440DOI10.1007/978-1-4614-1105-5
- Panov, D., Immersion in of a Klein bottle with Morse-Bott height function without centers, MathOverflow Available at https://mathoverflow.net/q/343792 2019.
- Prishlyak, A. O., 10.1016/S0166-8641(01)00077-3, Topology Appl. 119 (2002), 257-267. (2002) Zbl1042.57021MR1888671DOI10.1016/S0166-8641(01)00077-3
- Rot, T. O., 10.1016/j.crma.2016.08.003, C. R., Math., Acad. Sci. Paris 354 (2016), 1026-1028. (2016) Zbl1350.57035MR3553908DOI10.1016/j.crma.2016.08.003
- Saeki, O., 10.1093/imrn/rnaa301, (to appear) in Int. Math. Res. Not. DOI10.1093/imrn/rnaa301