Properties of unique information
Johannes Rauh; Maik Schünemann; Jürgen Jost
Kybernetika (2021)
- Volume: 57, Issue: 3, page 383-403
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRauh, Johannes, Schünemann, Maik, and Jost, Jürgen. "Properties of unique information." Kybernetika 57.3 (2021): 383-403. <http://eudml.org/doc/297757>.
@article{Rauh2021,
abstract = {We study the unique information function $UI(T:X\setminus Y)$ defined by Bertschinger et al. within the framework of information decompositions. In particular, we study uniqueness and support of the solutions to the convex optimization problem underlying the definition of $UI$. We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of $T$, $X$ and $Y$. Our results are based on a reformulation of the first order conditions on the objective function as rank constraints on a matrix of conditional probabilities. These results help to speed up the computation of $UI(T:X\setminus Y)$, most notably when $T$ is binary. Optima in the relative interior of the optimization domain are solutions of linear equations if $T$ is binary. In the all binary case, we obtain a complete picture of where the optimizing probability distributions lie.},
author = {Rauh, Johannes, Schünemann, Maik, Jost, Jürgen},
journal = {Kybernetika},
keywords = {information decomposition; unique information},
language = {eng},
number = {3},
pages = {383-403},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Properties of unique information},
url = {http://eudml.org/doc/297757},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Rauh, Johannes
AU - Schünemann, Maik
AU - Jost, Jürgen
TI - Properties of unique information
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 3
SP - 383
EP - 403
AB - We study the unique information function $UI(T:X\setminus Y)$ defined by Bertschinger et al. within the framework of information decompositions. In particular, we study uniqueness and support of the solutions to the convex optimization problem underlying the definition of $UI$. We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of $T$, $X$ and $Y$. Our results are based on a reformulation of the first order conditions on the objective function as rank constraints on a matrix of conditional probabilities. These results help to speed up the computation of $UI(T:X\setminus Y)$, most notably when $T$ is binary. Optima in the relative interior of the optimization domain are solutions of linear equations if $T$ is binary. In the all binary case, we obtain a complete picture of where the optimizing probability distributions lie.
LA - eng
KW - information decomposition; unique information
UR - http://eudml.org/doc/297757
ER -
References
top- Amari, Shun-ichi, Nagaoka, Hiroshi, , American Mathematical Society 2000. DOI
- Banerjee, P. Kr., Olbrich, E., Jost, J., Rauh, J., , In: Proc. Allerton, 2018. DOI
- Banerjee, P. Kr., Rauh, J., Montúfar, G., , In: Proc. IEEE ISIT 2018, pp. 141-145 DOI
- Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N., , Entropy 16 (2014), 4, 2161-2183. DOI
- Diaconis, Persi, Sturmfels, Bernd, Algebraic algorithms for sampling from conditional distributions., Ann. Statist. 26 (1998), 363-397.
- Fink, A., , J. Algebr. Combin. 33 (2011), 3, 455-463. DOI
- Finn, C., Lizier, J. T., , Entropy 20 (2018), 4, 297. DOI
- Harder, M., Salge, Ch., Polani, D., , Phys. Rev. E 87 (2013), 012130. DOI
- Ince, R., , Entropy 19 (2017), 7, 318. DOI
- James, R., Emenheiser, J., Crutchfield, J., , J. Physics A 52 (2018), 1, 014002. DOI
- Makkeh, A., Theis, D. O., Vicente, R., , Entropy 19 (2017), 10, 530. DOI
- Niu, X., Quinn, Ch., , In: Proc. IEEE ISIT 2019. DOI
- Rauh, J., Banerjee, P. Kr., Olbrich, E., Jost, J., , In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 3042-3046. DOI
- Rauh, J., Ay, N., , Theory Biosciences 133 (2014), 2, 63-78. DOI
- Rauh, J., Bertschinger, N., Olbrich, E., Jost, J., , In: Proc. IEEE ISIT 2014, pp. 2232-2236. DOI
- Smith, N. A., R, Tromble, W., Sampling Uniformly from the Unit Simplex., Technical Report 29, Johns Hopkins University 29, 2004.
- Williams, P., Beer, R., Nonnegative decomposition of multivariate information., arXiv:1004.2515v1.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.