Retracts that are kernels of locally nilpotent derivations

Dayan Liu; Xiaosong Sun

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 191-199
  • ISSN: 0011-4642

Abstract

top
Let k be a field of characteristic zero and B a k -domain. Let R be a retract of B being the kernel of a locally nilpotent derivation of B . We show that if B = R I for some principal ideal I (in particular, if B is a UFD), then B = R [ 1 ] , i.e., B is a polynomial algebra over R in one variable. It is natural to ask that, if a retract R of a k -UFD B is the kernel of two commuting locally nilpotent derivations of B , then does it follow that B R [ 2 ] ? We give a negative answer to this question. The interest in retracts comes from the fact that they are closely related to Zariski’s cancellation problem and the Jacobian conjecture in affine algebraic geometry.

How to cite

top

Liu, Dayan, and Sun, Xiaosong. "Retracts that are kernels of locally nilpotent derivations." Czechoslovak Mathematical Journal 72.1 (2022): 191-199. <http://eudml.org/doc/297785>.

@article{Liu2022,
abstract = {Let $k$ be a field of characteristic zero and $B$ a $k$-domain. Let $R$ be a retract of $B$ being the kernel of a locally nilpotent derivation of $B$. We show that if $B=R\oplus I$ for some principal ideal $I$ (in particular, if $B$ is a UFD), then $B= R^\{[1]\}$, i.e., $B$ is a polynomial algebra over $R$ in one variable. It is natural to ask that, if a retract $R$ of a $k$-UFD $B$ is the kernel of two commuting locally nilpotent derivations of $B$, then does it follow that $B\cong R^\{[2]\}$? We give a negative answer to this question. The interest in retracts comes from the fact that they are closely related to Zariski’s cancellation problem and the Jacobian conjecture in affine algebraic geometry.},
author = {Liu, Dayan, Sun, Xiaosong},
journal = {Czechoslovak Mathematical Journal},
keywords = {retract; locally nilpotent derivation; kernel; Zariski's cancellation problem},
language = {eng},
number = {1},
pages = {191-199},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Retracts that are kernels of locally nilpotent derivations},
url = {http://eudml.org/doc/297785},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Liu, Dayan
AU - Sun, Xiaosong
TI - Retracts that are kernels of locally nilpotent derivations
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 191
EP - 199
AB - Let $k$ be a field of characteristic zero and $B$ a $k$-domain. Let $R$ be a retract of $B$ being the kernel of a locally nilpotent derivation of $B$. We show that if $B=R\oplus I$ for some principal ideal $I$ (in particular, if $B$ is a UFD), then $B= R^{[1]}$, i.e., $B$ is a polynomial algebra over $R$ in one variable. It is natural to ask that, if a retract $R$ of a $k$-UFD $B$ is the kernel of two commuting locally nilpotent derivations of $B$, then does it follow that $B\cong R^{[2]}$? We give a negative answer to this question. The interest in retracts comes from the fact that they are closely related to Zariski’s cancellation problem and the Jacobian conjecture in affine algebraic geometry.
LA - eng
KW - retract; locally nilpotent derivation; kernel; Zariski's cancellation problem
UR - http://eudml.org/doc/297785
ER -

References

top
  1. Abhyankar, S. S., Moh, T.-t., 10.1515/crll.1975.276.148, J. Reine Angew. Math. 276 (1975), 148-166. (1975) Zbl0332.14004MR0379502DOI10.1515/crll.1975.276.148
  2. Chakraborty, S., Dasgupta, N., Dutta, A. K., Gupta, N., 10.1016/j.jalgebra.2020.08.030, J. Algebra 567 (2021), 243-268. (2021) Zbl1468.13060MR4158731DOI10.1016/j.jalgebra.2020.08.030
  3. Costa, D. L., 10.1016/0021-8693(77)90197-1, J. Algebra 44 (1977), 492-502. (1977) Zbl0352.13008MR0429866DOI10.1016/0021-8693(77)90197-1
  4. Craighero, P. C., A result on m -flats in 𝔸 k n , Rend. Semin. Mat. Univ. Padova 75 (1986), 39-46. (1986) Zbl0601.14010MR0847656
  5. Das, P., Dutta, A. K., 10.1216/JCA-2011-3-2-207, J. Commut. Algebra 3 (2011), 207-224. (2011) Zbl1241.13004MR2813472DOI10.1216/JCA-2011-3-2-207
  6. Freudenburg, G., 10.1007/978-3-662-55350-3, Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). (2017) Zbl1391.13001MR3700208DOI10.1007/978-3-662-55350-3
  7. Gong, S.-J., Yu, J.-T., 10.1016/j.jalgebra.2008.07.012, J. Algebra 320 (2008), 3062-3068. (2008) Zbl1159.16018MR2442010DOI10.1016/j.jalgebra.2008.07.012
  8. Gupta, N., 10.1007/s00222-013-0455-2, Invent. Math. 195 (2014), 279-288. (2014) Zbl1309.14050MR3148104DOI10.1007/s00222-013-0455-2
  9. Gupta, N., 10.1112/S0010437X13007793, Compos. Math. 150 (2014), 979-998. (2014) Zbl1327.14251MR3223879DOI10.1112/S0010437X13007793
  10. Gupta, N., 10.1016/j.aim.2014.07.012, Adv. Math. 264 (2014), 296-307. (2014) Zbl1325.14078MR3250286DOI10.1016/j.aim.2014.07.012
  11. Jelonek, Z., 10.1007/BF01457281, Math. Ann. 277 (1987), 113-120. (1987) Zbl0611.14010MR0884649DOI10.1007/BF01457281
  12. Liu, D., Sun, X., 10.1016/j.jpaa.2017.04.009, J. Pure Appl. Algebra 222 (2018), 382-386. (2018) Zbl1387.14147MR3694460DOI10.1016/j.jpaa.2017.04.009
  13. Mikhalev, A. A., Shpilrain, V., Yu, J.-T., 10.1007/978-0-387-21724-6, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 19. Springer, New York (2004). (2004) Zbl1039.16024MR2014326DOI10.1007/978-0-387-21724-6
  14. Nagamine, T., 10.1016/j.jalgebra.2019.05.040, J. Algebra 534 (2019), 339-343. (2019) Zbl1423.13063MR3979078DOI10.1016/j.jalgebra.2019.05.040
  15. Shpilrain, V., Yu, J.-T., 10.1090/S0002-9947-99-02251-5, Trans. Am. Math. Soc. 352 (2000), 477-484. (2000) Zbl0944.13011MR1487631DOI10.1090/S0002-9947-99-02251-5
  16. Sun, X., 10.1142/S0218196715500381, Int. J. Algebra Comput. 25 (2015), 1223-1238. (2015) Zbl1345.08007MR3438159DOI10.1142/S0218196715500381
  17. Suzuki, M., 10.2969/jmsj/02620241, J. Math. Soc. Japan 26 (1974), 241-257 French. (1974) Zbl0276.14001MR0338423DOI10.2969/jmsj/02620241
  18. Essen, A. van den, 10.1007/978-3-0348-8440-2, Progress in Mathematics 190. Birkhäuser, Basel (2000). (2000) Zbl0962.14037MR1790619DOI10.1007/978-3-0348-8440-2
  19. Essen, A. van den, Around the cancellation problem, Affine Algebraic Geometry Osaka University Press, Osaka (2007), 463-481. (2007) Zbl1129.14086MR2330485
  20. Yu, J.-T., 10.1016/j.jalgebra.2007.03.033, J. Algebra 319 (2008), 966-970. (2008) Zbl1132.13008MR2379089DOI10.1016/j.jalgebra.2007.03.033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.