Displaying similar documents to “Retracts that are kernels of locally nilpotent derivations”

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling Shao, Yubin Gao, Wei Gao (2016)

Czechoslovak Mathematical Journal

Similarity:

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 , , r ) and ( i , i - r + 1 ) ( i = r + 1 , , n ) entries are negative, and zeros elsewhere. We prove that for r 3 and n 4 r - 2 , the sign pattern 𝒟 n , r is not potentially nilpotent, and so not spectrally arbitrary.

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu, Jian Chang, Guiyun Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with...

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a...

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group...

On a generalization of a theorem of Burnside

Jiangtao Shi (2015)

Czechoslovak Mathematical Journal

Similarity:

A theorem of Burnside asserts that a finite group G is p -nilpotent if for some prime p a Sylow p -subgroup of G lies in the center of its normalizer. In this paper, let G be a finite group and p the smallest prime divisor of | G | , the order of G . Let P Syl p ( G ) . As a generalization of Burnside’s theorem, it is shown that if every non-cyclic p -subgroup of G is self-normalizing or normal in G then G is solvable. In particular, if P a , b | a p n - 1 = 1 , b 2 = 1 , b - 1 a b = a 1 + p n - 2 , where n 3 for p > 2 and n 4 for p = 2 , then G is p -nilpotent or p -closed. ...