Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients
Arun K. Tripathy; Shyam S. Santra
Mathematica Bohemica (2021)
- Volume: 146, Issue: 2, page 185-197
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topTripathy, Arun K., and Santra, Shyam S.. "Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients." Mathematica Bohemica 146.2 (2021): 185-197. <http://eudml.org/doc/297809>.
@article{Tripathy2021,
abstract = {In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type \[ (r(t)(z^\{\prime \}(t))^\gamma )^\{\prime \} +\sum \_\{i=1\}^m q\_i(t)x^\{\alpha \_i\}(\sigma \_i(t))=0, \quad t\ge t\_0, \]
where $z(t)=x(t)+p(t)x(\tau (t))$. Under the assumption $\int ^\{\infty \}(r(\eta ))^\{-1/\gamma \} \{\rm d\}\eta =\infty $, we consider two cases when $\gamma >\alpha _i$ and $\gamma <\alpha _i$. Our main tool is Lebesgue’s dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.},
author = {Tripathy, Arun K., Santra, Shyam S.},
journal = {Mathematica Bohemica},
keywords = {oscillation; non-oscillation; neutral; delay; Lebesgue's dominated convergence theorem},
language = {eng},
number = {2},
pages = {185-197},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients},
url = {http://eudml.org/doc/297809},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Tripathy, Arun K.
AU - Santra, Shyam S.
TI - Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 185
EP - 197
AB - In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type \[ (r(t)(z^{\prime }(t))^\gamma )^{\prime } +\sum _{i=1}^m q_i(t)x^{\alpha _i}(\sigma _i(t))=0, \quad t\ge t_0, \]
where $z(t)=x(t)+p(t)x(\tau (t))$. Under the assumption $\int ^{\infty }(r(\eta ))^{-1/\gamma } {\rm d}\eta =\infty $, we consider two cases when $\gamma >\alpha _i$ and $\gamma <\alpha _i$. Our main tool is Lebesgue’s dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.
LA - eng
KW - oscillation; non-oscillation; neutral; delay; Lebesgue's dominated convergence theorem
UR - http://eudml.org/doc/297809
ER -
References
top- Agarwal, R. P., Bohner, M., Li, T., Zhang, C., 10.37193/CJM.2014.01.01, Carpathian J. Math. 30 (2014), 1-6. (2014) Zbl1324.34078MR3244084DOI10.37193/CJM.2014.01.01
- Agarwal, R. P., Bohner, M., Li, T., Zhang, C., 10.1007/s10231-013-0361-7, Ann. Mat. Pura Appl. (4) 193 (2014), 1861-1875. (2014) Zbl1308.34083MR3275266DOI10.1007/s10231-013-0361-7
- Agarwal, R. P., Bohner, M., Li, T., Zhang, C., 10.1016/j.amc.2015.05.008, Appl. Math. Comput. 266 (2015), 481-490. (2015) Zbl1410.34191MR3377575DOI10.1016/j.amc.2015.05.008
- Agarwal, R. P., Zhang, C., Li, T., 10.1016/j.amc.2015.10.089, Appl. Math. Comput. 274 (2016), 178-181. (2016) Zbl1410.34192MR3433126DOI10.1016/j.amc.2015.10.089
- Baculíková, B., Džurina, J., 10.1016/j.camwa.2010.10.035, Comput. Math. Appl. 61 (2011), 94-99. (2011) Zbl1207.34081MR2739438DOI10.1016/j.camwa.2010.10.035
- Baculíková, B., Džurina, J., 10.1016/j.camwa.2011.10.024, Comput. Math. Appl. 62 (2011), 4472-4478. (2011) Zbl1236.34092MR2855589DOI10.1016/j.camwa.2011.10.024
- Baculíková, B., Li, T., Džurina, J., 10.14232/ejqtde.2011.1.74, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 74, 13 pages. (2011) Zbl1340.34238MR2838502DOI10.14232/ejqtde.2011.1.74
- Bohner, M., Grace, S. R., Jadlovská, I., 10.14232/ejqtde.2017.1.60, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 60, 12 pages. (2017) Zbl1413.34213MR3690229DOI10.14232/ejqtde.2017.1.60
- Brands, J. J. A. M., 10.1016/0022-247X(78)90104-X, J. Math. Anal. Appl. 63 (1978), 54-64. (1978) Zbl0384.34049MR0470416DOI10.1016/0022-247X(78)90104-X
- Chatzarakis, G. E., Džurina, J., Jadlovská, I., 10.1016/j.amc.2018.10.091, Appl. Math. Comput. 347 (2019), 404-416. (2019) Zbl1428.34088MR3880830DOI10.1016/j.amc.2018.10.091
- Chatzarakis, G. E., Grace, S. R., Jadlovská, I., Li, T., Tunç, E., 10.1155/2019/5691758, Complexity 2019 (2019), Article ID 5691758, 7 pages. (2019) Zbl1429.34071DOI10.1155/2019/5691758
- Chatzarakis, G. E., Jadlovská, I., 10.15672/hjms.2017.522, Hacet. J. Math. Stat. 48 (2019), 170-179. (2019) MR3976169DOI10.15672/hjms.2017.522
- Džurina, J., 10.2478/v10127-011-0006-4, Tatra Mt. Math. Publ. 48 (2011), 61-71. (2011) Zbl1265.34232MR2841106DOI10.2478/v10127-011-0006-4
- Džurina, J., Grace, S. R., Jadlovská, I., Li, T., 10.1002/mana.201800196, Math. Nachr. 293 (2020), 910-922. (2020) Zbl07206438MR4100546DOI10.1002/mana.201800196
- Grace, S. R., Džurina, J., Jadlovská, I., Li, T., 10.1186/s13660-018-1767-y, J. Inequal. Appl. 2018 (2018), Article ID 193, 11 pages. (2018) MR3833834DOI10.1186/s13660-018-1767-y
- Hale, J., 10.1007/978-1-4612-9892-2_3, Applied Mathematical Sciences 3. Springer, New York (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2_3
- Karpuz, B., Santra, S. S., 10.15672/HJMS.2017.542, Hacet. J. Math. Stat 48 (2019), 633-643. (2019) MR3974570DOI10.15672/HJMS.2017.542
- Li, H., Zhao, Y., Han, Z., 10.1007/s12190-018-1208-6, J. Appl. Math. Comput. 60 (2019), 191-200. (2019) Zbl1422.34194MR3969079DOI10.1007/s12190-018-1208-6
- Li, Q., Wang, R., Chen, F., Li, T., 10.1186/s13662-015-0377-y, Adv. Difference Equ. 2015 (2015), Article ID 35, 7 pages. (2015) Zbl1350.34053MR3304960DOI10.1186/s13662-015-0377-y
- Li, T., Rogovchenko, Y. V., 10.1155/2014/594190, Abstr. Appl. Anal. 2014 (2014), Article ID 594190, 5 pages. (2014) Zbl07022675MR3226209DOI10.1155/2014/594190
- Li, T., Rogovchenko, Y. V., 10.1002/mana.201300029, Math. Nachr. 288 (2015), 1150-1162. (2015) Zbl1342.34090MR3367905DOI10.1002/mana.201300029
- Li, T., Rogovchenko, Y. V., 10.1007/s00605-017-1039-9, Monatsh. Math. 184 (2017), 489-500. (2017) Zbl1386.34118MR3709308DOI10.1007/s00605-017-1039-9
- Pinelas, S., Santra, S. S., 10.1007/s11784-018-0506-9, J. Fixed Point Theory Appl. 20 (2018), Article ID 27, 13 pages. (2018) Zbl1387.34095MR3761383DOI10.1007/s11784-018-0506-9
- Qian, Y., Xu, R., 10.7153/dea-03-20, Differ. Equ. Appl. 3 (2011), 323-335. (2011) Zbl1235.34184MR2856412DOI10.7153/dea-03-20
- Santra, S. S., 10.7153/dea-08-03, Differ. Equ. Appl. 8 (2016), 33-51. (2016) Zbl1337.34071MR3462235DOI10.7153/dea-08-03
- Santra, S. S., Oscillation analysis for nonlinear neutral differential equations of second order with several delays, Mathematica 59 (2017), 111-123. (2017) Zbl07101431MR3937284
- Santra, S. S., 10.24193/mathcluj.2019.1.06, Mathematica 61 (2019), 63-78. (2019) Zbl07101459MR3938805DOI10.24193/mathcluj.2019.1.06
- Tripathy, A. K., Panda, B., Sethi, A. K., 10.7153/dea-08-12, Differ. Equ. Appl. 8 (2016), 247-258. (2016) Zbl1341.34072MR3488819DOI10.7153/dea-08-12
- Wong, J. S. W., 10.1006/jmaa.2000.7063, J. Math. Anal. Appl. 252 (2000), 342-352. (2000) Zbl0976.34057MR1797859DOI10.1006/jmaa.2000.7063
- Zhang, C., Agarwal, R. P., Bohner, M., Li, T., 10.1007/s40840-014-0048-2, Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 761-778. (2015) Zbl1318.34124MR3323739DOI10.1007/s40840-014-0048-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.