Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients

Arun K. Tripathy; Shyam S. Santra

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 2, page 185-197
  • ISSN: 0862-7959

Abstract

top
In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type ( r ( t ) ( z ' ( t ) ) γ ) ' + i = 1 m q i ( t ) x α i ( σ i ( t ) ) = 0 , t t 0 , where z ( t ) = x ( t ) + p ( t ) x ( τ ( t ) ) . Under the assumption ( r ( η ) ) - 1 / γ d η = , we consider two cases when γ > α i and γ < α i . Our main tool is Lebesgue’s dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.

How to cite

top

Tripathy, Arun K., and Santra, Shyam S.. "Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients." Mathematica Bohemica 146.2 (2021): 185-197. <http://eudml.org/doc/297809>.

@article{Tripathy2021,
abstract = {In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type \[ (r(t)(z^\{\prime \}(t))^\gamma )^\{\prime \} +\sum \_\{i=1\}^m q\_i(t)x^\{\alpha \_i\}(\sigma \_i(t))=0, \quad t\ge t\_0, \] where $z(t)=x(t)+p(t)x(\tau (t))$. Under the assumption $\int ^\{\infty \}(r(\eta ))^\{-1/\gamma \} \{\rm d\}\eta =\infty $, we consider two cases when $\gamma >\alpha _i$ and $\gamma <\alpha _i$. Our main tool is Lebesgue’s dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.},
author = {Tripathy, Arun K., Santra, Shyam S.},
journal = {Mathematica Bohemica},
keywords = {oscillation; non-oscillation; neutral; delay; Lebesgue's dominated convergence theorem},
language = {eng},
number = {2},
pages = {185-197},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients},
url = {http://eudml.org/doc/297809},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Tripathy, Arun K.
AU - Santra, Shyam S.
TI - Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 185
EP - 197
AB - In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type \[ (r(t)(z^{\prime }(t))^\gamma )^{\prime } +\sum _{i=1}^m q_i(t)x^{\alpha _i}(\sigma _i(t))=0, \quad t\ge t_0, \] where $z(t)=x(t)+p(t)x(\tau (t))$. Under the assumption $\int ^{\infty }(r(\eta ))^{-1/\gamma } {\rm d}\eta =\infty $, we consider two cases when $\gamma >\alpha _i$ and $\gamma <\alpha _i$. Our main tool is Lebesgue’s dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.
LA - eng
KW - oscillation; non-oscillation; neutral; delay; Lebesgue's dominated convergence theorem
UR - http://eudml.org/doc/297809
ER -

References

top
  1. Agarwal, R. P., Bohner, M., Li, T., Zhang, C., 10.37193/CJM.2014.01.01, Carpathian J. Math. 30 (2014), 1-6. (2014) Zbl1324.34078MR3244084DOI10.37193/CJM.2014.01.01
  2. Agarwal, R. P., Bohner, M., Li, T., Zhang, C., 10.1007/s10231-013-0361-7, Ann. Mat. Pura Appl. (4) 193 (2014), 1861-1875. (2014) Zbl1308.34083MR3275266DOI10.1007/s10231-013-0361-7
  3. Agarwal, R. P., Bohner, M., Li, T., Zhang, C., 10.1016/j.amc.2015.05.008, Appl. Math. Comput. 266 (2015), 481-490. (2015) Zbl1410.34191MR3377575DOI10.1016/j.amc.2015.05.008
  4. Agarwal, R. P., Zhang, C., Li, T., 10.1016/j.amc.2015.10.089, Appl. Math. Comput. 274 (2016), 178-181. (2016) Zbl1410.34192MR3433126DOI10.1016/j.amc.2015.10.089
  5. Baculíková, B., Džurina, J., 10.1016/j.camwa.2010.10.035, Comput. Math. Appl. 61 (2011), 94-99. (2011) Zbl1207.34081MR2739438DOI10.1016/j.camwa.2010.10.035
  6. Baculíková, B., Džurina, J., 10.1016/j.camwa.2011.10.024, Comput. Math. Appl. 62 (2011), 4472-4478. (2011) Zbl1236.34092MR2855589DOI10.1016/j.camwa.2011.10.024
  7. Baculíková, B., Li, T., Džurina, J., 10.14232/ejqtde.2011.1.74, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 74, 13 pages. (2011) Zbl1340.34238MR2838502DOI10.14232/ejqtde.2011.1.74
  8. Bohner, M., Grace, S. R., Jadlovská, I., 10.14232/ejqtde.2017.1.60, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 60, 12 pages. (2017) Zbl1413.34213MR3690229DOI10.14232/ejqtde.2017.1.60
  9. Brands, J. J. A. M., 10.1016/0022-247X(78)90104-X, J. Math. Anal. Appl. 63 (1978), 54-64. (1978) Zbl0384.34049MR0470416DOI10.1016/0022-247X(78)90104-X
  10. Chatzarakis, G. E., Džurina, J., Jadlovská, I., 10.1016/j.amc.2018.10.091, Appl. Math. Comput. 347 (2019), 404-416. (2019) Zbl1428.34088MR3880830DOI10.1016/j.amc.2018.10.091
  11. Chatzarakis, G. E., Grace, S. R., Jadlovská, I., Li, T., Tunç, E., 10.1155/2019/5691758, Complexity 2019 (2019), Article ID 5691758, 7 pages. (2019) Zbl1429.34071DOI10.1155/2019/5691758
  12. Chatzarakis, G. E., Jadlovská, I., 10.15672/hjms.2017.522, Hacet. J. Math. Stat. 48 (2019), 170-179. (2019) MR3976169DOI10.15672/hjms.2017.522
  13. Džurina, J., 10.2478/v10127-011-0006-4, Tatra Mt. Math. Publ. 48 (2011), 61-71. (2011) Zbl1265.34232MR2841106DOI10.2478/v10127-011-0006-4
  14. Džurina, J., Grace, S. R., Jadlovská, I., Li, T., 10.1002/mana.201800196, Math. Nachr. 293 (2020), 910-922. (2020) Zbl07206438MR4100546DOI10.1002/mana.201800196
  15. Grace, S. R., Džurina, J., Jadlovská, I., Li, T., 10.1186/s13660-018-1767-y, J. Inequal. Appl. 2018 (2018), Article ID 193, 11 pages. (2018) MR3833834DOI10.1186/s13660-018-1767-y
  16. Hale, J., 10.1007/978-1-4612-9892-2_3, Applied Mathematical Sciences 3. Springer, New York (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2_3
  17. Karpuz, B., Santra, S. S., 10.15672/HJMS.2017.542, Hacet. J. Math. Stat 48 (2019), 633-643. (2019) MR3974570DOI10.15672/HJMS.2017.542
  18. Li, H., Zhao, Y., Han, Z., 10.1007/s12190-018-1208-6, J. Appl. Math. Comput. 60 (2019), 191-200. (2019) Zbl1422.34194MR3969079DOI10.1007/s12190-018-1208-6
  19. Li, Q., Wang, R., Chen, F., Li, T., 10.1186/s13662-015-0377-y, Adv. Difference Equ. 2015 (2015), Article ID 35, 7 pages. (2015) Zbl1350.34053MR3304960DOI10.1186/s13662-015-0377-y
  20. Li, T., Rogovchenko, Y. V., 10.1155/2014/594190, Abstr. Appl. Anal. 2014 (2014), Article ID 594190, 5 pages. (2014) Zbl07022675MR3226209DOI10.1155/2014/594190
  21. Li, T., Rogovchenko, Y. V., 10.1002/mana.201300029, Math. Nachr. 288 (2015), 1150-1162. (2015) Zbl1342.34090MR3367905DOI10.1002/mana.201300029
  22. Li, T., Rogovchenko, Y. V., 10.1007/s00605-017-1039-9, Monatsh. Math. 184 (2017), 489-500. (2017) Zbl1386.34118MR3709308DOI10.1007/s00605-017-1039-9
  23. Pinelas, S., Santra, S. S., 10.1007/s11784-018-0506-9, J. Fixed Point Theory Appl. 20 (2018), Article ID 27, 13 pages. (2018) Zbl1387.34095MR3761383DOI10.1007/s11784-018-0506-9
  24. Qian, Y., Xu, R., 10.7153/dea-03-20, Differ. Equ. Appl. 3 (2011), 323-335. (2011) Zbl1235.34184MR2856412DOI10.7153/dea-03-20
  25. Santra, S. S., 10.7153/dea-08-03, Differ. Equ. Appl. 8 (2016), 33-51. (2016) Zbl1337.34071MR3462235DOI10.7153/dea-08-03
  26. Santra, S. S., Oscillation analysis for nonlinear neutral differential equations of second order with several delays, Mathematica 59 (2017), 111-123. (2017) Zbl07101431MR3937284
  27. Santra, S. S., 10.24193/mathcluj.2019.1.06, Mathematica 61 (2019), 63-78. (2019) Zbl07101459MR3938805DOI10.24193/mathcluj.2019.1.06
  28. Tripathy, A. K., Panda, B., Sethi, A. K., 10.7153/dea-08-12, Differ. Equ. Appl. 8 (2016), 247-258. (2016) Zbl1341.34072MR3488819DOI10.7153/dea-08-12
  29. Wong, J. S. W., 10.1006/jmaa.2000.7063, J. Math. Anal. Appl. 252 (2000), 342-352. (2000) Zbl0976.34057MR1797859DOI10.1006/jmaa.2000.7063
  30. Zhang, C., Agarwal, R. P., Bohner, M., Li, T., 10.1007/s40840-014-0048-2, Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 761-778. (2015) Zbl1318.34124MR3323739DOI10.1007/s40840-014-0048-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.