Prime ideal factorization in a number field via Newton polygons

Lhoussain El Fadil

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 529-543
  • ISSN: 0011-4642

Abstract

top
Let K be a number field defined by an irreducible polynomial F ( X ) [ X ] and K its ring of integers. For every prime integer p , we give sufficient and necessary conditions on F ( X ) that guarantee the existence of exactly r prime ideals of K lying above p , where F ¯ ( X ) factors into powers of r monic irreducible polynomials in 𝔽 p [ X ] . The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of K lying above p . We further specify for every prime ideal of K lying above p , the ramification index, the residue degree, and a p -generator.

How to cite

top

El Fadil, Lhoussain. "Prime ideal factorization in a number field via Newton polygons." Czechoslovak Mathematical Journal 71.2 (2021): 529-543. <http://eudml.org/doc/297822>.

@article{ElFadil2021,
abstract = {Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb \{Z\}[X]$ and $\mathbb \{Z\}_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb \{Z\}_K$ lying above $p$, where $\bar\{F\}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb \{F\}_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb \{Z\}_K$ lying above $p$. We further specify for every prime ideal of $\mathbb \{Z\}_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator.},
author = {El Fadil, Lhoussain},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime factorization; valuation; $\phi $-expansion; Newton polygon},
language = {eng},
number = {2},
pages = {529-543},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Prime ideal factorization in a number field via Newton polygons},
url = {http://eudml.org/doc/297822},
volume = {71},
year = {2021},
}

TY - JOUR
AU - El Fadil, Lhoussain
TI - Prime ideal factorization in a number field via Newton polygons
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 529
EP - 543
AB - Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb {Z}[X]$ and $\mathbb {Z}_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb {Z}_K$ lying above $p$, where $\bar{F}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb {F}_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb {Z}_K$ lying above $p$. We further specify for every prime ideal of $\mathbb {Z}_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator.
LA - eng
KW - prime factorization; valuation; $\phi $-expansion; Newton polygon
UR - http://eudml.org/doc/297822
ER -

References

top
  1. Bauer, M., 10.1007/BF01450065, Math. Ann. 64 (1907), 573-576 German 9999JFM99999 38.0249.02. (1907) MR1511458DOI10.1007/BF01450065
  2. Bauer, M., 10.1515/crll.1907.132.21, J. Reine Angew. Math. 132 (1907), 21-32 German. (1907) MR1580710DOI10.1515/crll.1907.132.21
  3. Cohen, S. D., Movahhedi, A., Salinier, A., 10.1112/S0025579300015801, Mathematika 47 (2000), 173-196. (2000) Zbl1018.12001MR1924496DOI10.1112/S0025579300015801
  4. Dedekind, R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen, Abh. Math. Klasse Königlichen Gesellsch. Wiss. Göttingen 23 (1878), 3-37 German. (1878) 
  5. Fadil, L. El, Montes, J., Nart, E., 10.1142/S0219498812500739, J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. (2012) Zbl1297.11134MR2959422DOI10.1142/S0219498812500739
  6. Guàrdia, J., Montes, J., Nart, E., 10.1090/S0002-9947-2011-05442-5, Trans. Am. Math. Soc. 364 (2012), 361-416. (2012) Zbl1252.11091MR2833586DOI10.1090/S0002-9947-2011-05442-5
  7. Hensel, K., 10.1515/crll.1894.113.61, J. Reine Angew. Math. 113 (1894), 61-83 German 9999JFM99999 25.0135.03. (1894) MR1580345DOI10.1515/crll.1894.113.61
  8. Khanduja, S. K., Kumar, M., 10.1007/s00229-009-0320-1, Manuscr. Math. 131 (2010), 323-334. (2010) Zbl1216.12007MR2592083DOI10.1007/s00229-009-0320-1
  9. MacLane, S., 10.1090/S0002-9947-1936-1501879-8, Trans. Am. Math. Soc. 40 (1936), 363-395 9999JFM99999 62.1106.02. (1936) MR1501879DOI10.1090/S0002-9947-1936-1501879-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.