Prime ideal factorization in a number field via Newton polygons
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 529-543
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEl Fadil, Lhoussain. "Prime ideal factorization in a number field via Newton polygons." Czechoslovak Mathematical Journal 71.2 (2021): 529-543. <http://eudml.org/doc/297822>.
@article{ElFadil2021,
abstract = {Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb \{Z\}[X]$ and $\mathbb \{Z\}_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb \{Z\}_K$ lying above $p$, where $\bar\{F\}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb \{F\}_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb \{Z\}_K$ lying above $p$. We further specify for every prime ideal of $\mathbb \{Z\}_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator.},
author = {El Fadil, Lhoussain},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime factorization; valuation; $\phi $-expansion; Newton polygon},
language = {eng},
number = {2},
pages = {529-543},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Prime ideal factorization in a number field via Newton polygons},
url = {http://eudml.org/doc/297822},
volume = {71},
year = {2021},
}
TY - JOUR
AU - El Fadil, Lhoussain
TI - Prime ideal factorization in a number field via Newton polygons
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 529
EP - 543
AB - Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb {Z}[X]$ and $\mathbb {Z}_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb {Z}_K$ lying above $p$, where $\bar{F}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb {F}_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb {Z}_K$ lying above $p$. We further specify for every prime ideal of $\mathbb {Z}_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator.
LA - eng
KW - prime factorization; valuation; $\phi $-expansion; Newton polygon
UR - http://eudml.org/doc/297822
ER -
References
top- Bauer, M., 10.1007/BF01450065, Math. Ann. 64 (1907), 573-576 German 9999JFM99999 38.0249.02. (1907) MR1511458DOI10.1007/BF01450065
- Bauer, M., 10.1515/crll.1907.132.21, J. Reine Angew. Math. 132 (1907), 21-32 German. (1907) MR1580710DOI10.1515/crll.1907.132.21
- Cohen, S. D., Movahhedi, A., Salinier, A., 10.1112/S0025579300015801, Mathematika 47 (2000), 173-196. (2000) Zbl1018.12001MR1924496DOI10.1112/S0025579300015801
- Dedekind, R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen, Abh. Math. Klasse Königlichen Gesellsch. Wiss. Göttingen 23 (1878), 3-37 German. (1878)
- Fadil, L. El, Montes, J., Nart, E., 10.1142/S0219498812500739, J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. (2012) Zbl1297.11134MR2959422DOI10.1142/S0219498812500739
- Guàrdia, J., Montes, J., Nart, E., 10.1090/S0002-9947-2011-05442-5, Trans. Am. Math. Soc. 364 (2012), 361-416. (2012) Zbl1252.11091MR2833586DOI10.1090/S0002-9947-2011-05442-5
- Hensel, K., 10.1515/crll.1894.113.61, J. Reine Angew. Math. 113 (1894), 61-83 German 9999JFM99999 25.0135.03. (1894) MR1580345DOI10.1515/crll.1894.113.61
- Khanduja, S. K., Kumar, M., 10.1007/s00229-009-0320-1, Manuscr. Math. 131 (2010), 323-334. (2010) Zbl1216.12007MR2592083DOI10.1007/s00229-009-0320-1
- MacLane, S., 10.1090/S0002-9947-1936-1501879-8, Trans. Am. Math. Soc. 40 (1936), 363-395 9999JFM99999 62.1106.02. (1936) MR1501879DOI10.1090/S0002-9947-1936-1501879-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.