Caristi's fixed point theorem in probabilistic metric spaces

Kianoush Fathi Vajargah; Hamid Mottaghi Golshan; Abbas Arjomand Far

Kybernetika (2021)

  • Issue: 1, page 46-59
  • ISSN: 0023-5954

Abstract

top
In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.

How to cite

top

Fathi Vajargah, Kianoush, Mottaghi Golshan, Hamid, and Arjomand Far, Abbas. "Caristi's fixed point theorem in probabilistic metric spaces." Kybernetika (2021): 46-59. <http://eudml.org/doc/297864>.

@article{FathiVajargah2021,
abstract = {In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.},
author = {Fathi Vajargah, Kianoush, Mottaghi Golshan, Hamid, Arjomand Far, Abbas},
journal = {Kybernetika},
keywords = {probabilistic metric space; Caristi's fixed point; Archimedean t-norm},
language = {eng},
number = {1},
pages = {46-59},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Caristi's fixed point theorem in probabilistic metric spaces},
url = {http://eudml.org/doc/297864},
year = {2021},
}

TY - JOUR
AU - Fathi Vajargah, Kianoush
AU - Mottaghi Golshan, Hamid
AU - Arjomand Far, Abbas
TI - Caristi's fixed point theorem in probabilistic metric spaces
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 46
EP - 59
AB - In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.
LA - eng
KW - probabilistic metric space; Caristi's fixed point; Archimedean t-norm
UR - http://eudml.org/doc/297864
ER -

References

top
  1. Abbasi, N., Golshan, H. Mottaghi, Caristi's fixed point theorem and its equivalences in fuzzy metric spaces., Kybernetika 52 (2016), 6, 966-979. MR3607855
  2. Amini-Harandi, A., , Nonlinear Anal. 72 (2010), 12, 4661-4665. MR2639213DOI
  3. Boyd, D. W., Wong, J. S. W., , Proc. Amer. Math. Soc. 20 (1969), 458-464. MR0239559DOI
  4. Caristi, J., 10.1090/S0002-9947-1976-0394329-4, Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl0305.47029MR0394329DOI10.1090/S0002-9947-1976-0394329-4
  5. Caristi, J., Kirk, W. A., 10.1007/BFb0081133, In: The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974), pp. 74-83. Lecture Notes in Math., Vol. 490. Springer, Berlin 1975. Zbl0315.54052MR0399968DOI10.1007/BFb0081133
  6. Chang, S.-S., Cho, Y. J., Kang, S.-M., Nonlinear Operator Theory in Probablistic Metric Spaces., Nova Publishers, 2001. MR2018691
  7. George, A., Veeramani, P., , Fuzzy Sets and Systems 64 (1994), 3, 395-399. Zbl0843.54014MR1289545DOI
  8. Grabiec, M., , Fuzzy Sets and Systems 27 (1988), 3, 385-389. Zbl0664.54032MR0956385DOI
  9. Gregori, V., Miñana, J.-J., Morillas, S., , Fuzzy Sets and Systems 204 (2012), 71-85. Zbl1259.54001MR2950797DOI
  10. Gregori, V., Morillas, S., Sapena, A., , Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. Zbl1201.54011MR2652720DOI
  11. Hadzic, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces., Springer Science and Business Media, 2013. MR1459163
  12. Jachymski, J. R., , J. Math. Anal. Appl. 227 (1998), 1, 55-67. MR1652882DOI
  13. Khamsi, M. A., , Nonlinear Anal. 71 (2009), 1-2, 227-231. MR2518029DOI
  14. Khamsi, M. A., Kirk, W. A., An Introduction to Metric Spaces and Fixed Point Theory., John Wiley and Sons, 2011. MR1818603
  15. Khamsi, M. A., Misane, D., Compactness of convexity structures in metrics paces., Math. Japon. 41 (1995), 321-326. MR1326965
  16. Klement, E., Mesiar, R., Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms., Elsevier Science, 2005. MR2166082
  17. Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets and Systems 86 (1997), 2, 189-195. MR1437918DOI
  18. Klement, E. P., Mesiar, R., Pap, E., Triangular norms., Trends in Logic-Studia Logica Library 8, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  19. Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets and Systems 145 (2004), 3, 411-438. MR2075838DOI
  20. Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets and Systems 145 (2004), 3, 439-454. MR2075839DOI
  21. Kolesárová, A., A note on archimedean triangular norms., BUSEFAL 80 (1999), 57-60. 
  22. Kramosil, I., Michálek, J., Fuzzy metrics and statistical metric spaces., Kybernetika 11 (1075), 5, 336-344. Zbl0319.54002MR0410633
  23. Menger, K., , Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl0063.03886MR0007576DOI
  24. Moore, J. C., Mathematical Methods for Economic Theory 1., Springer Science and Business Media, 1999. MR1727001
  25. Schweizer, B., Sklar, A., , Pacific J. Math. 10 (1960), 313-334. Zbl0136.39301MR0115153DOI
  26. Schweizer, B., Sklar, A., Probabilistic Metric Spaces., North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York 1983. Zbl0546.60010MR0790314
  27. Sedghi, S., Shobkolaei, N., Altun, I., A new approach to Caristi's fixed point theorem on non-Archimedean fuzzy metric spaces., Iran. J. Fuzzy Syst. 12 (2015), 2, 137-143, 157. MR3363585
  28. Zeidler, E., , Springer-Verlag, New York 1986. MR0816732DOI
  29. Zermelo, E., , Math. Ann. 65 (1907), 1, 107-128. MR1511462DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.