Caristi's fixed point theorem in probabilistic metric spaces
Kianoush Fathi Vajargah; Hamid Mottaghi Golshan; Abbas Arjomand Far
Kybernetika (2021)
- Issue: 1, page 46-59
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFathi Vajargah, Kianoush, Mottaghi Golshan, Hamid, and Arjomand Far, Abbas. "Caristi's fixed point theorem in probabilistic metric spaces." Kybernetika (2021): 46-59. <http://eudml.org/doc/297864>.
@article{FathiVajargah2021,
abstract = {In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.},
author = {Fathi Vajargah, Kianoush, Mottaghi Golshan, Hamid, Arjomand Far, Abbas},
journal = {Kybernetika},
keywords = {probabilistic metric space; Caristi's fixed point; Archimedean t-norm},
language = {eng},
number = {1},
pages = {46-59},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Caristi's fixed point theorem in probabilistic metric spaces},
url = {http://eudml.org/doc/297864},
year = {2021},
}
TY - JOUR
AU - Fathi Vajargah, Kianoush
AU - Mottaghi Golshan, Hamid
AU - Arjomand Far, Abbas
TI - Caristi's fixed point theorem in probabilistic metric spaces
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 46
EP - 59
AB - In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.
LA - eng
KW - probabilistic metric space; Caristi's fixed point; Archimedean t-norm
UR - http://eudml.org/doc/297864
ER -
References
top- Abbasi, N., Golshan, H. Mottaghi, Caristi's fixed point theorem and its equivalences in fuzzy metric spaces., Kybernetika 52 (2016), 6, 966-979. MR3607855
- Amini-Harandi, A., , Nonlinear Anal. 72 (2010), 12, 4661-4665. MR2639213DOI
- Boyd, D. W., Wong, J. S. W., , Proc. Amer. Math. Soc. 20 (1969), 458-464. MR0239559DOI
- Caristi, J., 10.1090/S0002-9947-1976-0394329-4, Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl0305.47029MR0394329DOI10.1090/S0002-9947-1976-0394329-4
- Caristi, J., Kirk, W. A., 10.1007/BFb0081133, In: The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974), pp. 74-83. Lecture Notes in Math., Vol. 490. Springer, Berlin 1975. Zbl0315.54052MR0399968DOI10.1007/BFb0081133
- Chang, S.-S., Cho, Y. J., Kang, S.-M., Nonlinear Operator Theory in Probablistic Metric Spaces., Nova Publishers, 2001. MR2018691
- George, A., Veeramani, P., , Fuzzy Sets and Systems 64 (1994), 3, 395-399. Zbl0843.54014MR1289545DOI
- Grabiec, M., , Fuzzy Sets and Systems 27 (1988), 3, 385-389. Zbl0664.54032MR0956385DOI
- Gregori, V., Miñana, J.-J., Morillas, S., , Fuzzy Sets and Systems 204 (2012), 71-85. Zbl1259.54001MR2950797DOI
- Gregori, V., Morillas, S., Sapena, A., , Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. Zbl1201.54011MR2652720DOI
- Hadzic, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces., Springer Science and Business Media, 2013. MR1459163
- Jachymski, J. R., , J. Math. Anal. Appl. 227 (1998), 1, 55-67. MR1652882DOI
- Khamsi, M. A., , Nonlinear Anal. 71 (2009), 1-2, 227-231. MR2518029DOI
- Khamsi, M. A., Kirk, W. A., An Introduction to Metric Spaces and Fixed Point Theory., John Wiley and Sons, 2011. MR1818603
- Khamsi, M. A., Misane, D., Compactness of convexity structures in metrics paces., Math. Japon. 41 (1995), 321-326. MR1326965
- Klement, E., Mesiar, R., Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms., Elsevier Science, 2005. MR2166082
- Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets and Systems 86 (1997), 2, 189-195. MR1437918DOI
- Klement, E. P., Mesiar, R., Pap, E., Triangular norms., Trends in Logic-Studia Logica Library 8, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets and Systems 145 (2004), 3, 411-438. MR2075838DOI
- Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets and Systems 145 (2004), 3, 439-454. MR2075839DOI
- Kolesárová, A., A note on archimedean triangular norms., BUSEFAL 80 (1999), 57-60.
- Kramosil, I., Michálek, J., Fuzzy metrics and statistical metric spaces., Kybernetika 11 (1075), 5, 336-344. Zbl0319.54002MR0410633
- Menger, K., , Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl0063.03886MR0007576DOI
- Moore, J. C., Mathematical Methods for Economic Theory 1., Springer Science and Business Media, 1999. MR1727001
- Schweizer, B., Sklar, A., , Pacific J. Math. 10 (1960), 313-334. Zbl0136.39301MR0115153DOI
- Schweizer, B., Sklar, A., Probabilistic Metric Spaces., North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York 1983. Zbl0546.60010MR0790314
- Sedghi, S., Shobkolaei, N., Altun, I., A new approach to Caristi's fixed point theorem on non-Archimedean fuzzy metric spaces., Iran. J. Fuzzy Syst. 12 (2015), 2, 137-143, 157. MR3363585
- Zeidler, E., , Springer-Verlag, New York 1986. MR0816732DOI
- Zermelo, E., , Math. Ann. 65 (1907), 1, 107-128. MR1511462DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.