Caristi's fixed point theorem and its equivalences in fuzzy metric spaces

Naser Abbasi; Hamid Mottaghi Golshan

Kybernetika (2016)

  • Volume: 52, Issue: 6, page 929-942
  • ISSN: 0023-5954

Abstract

top
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.

How to cite

top

Abbasi, Naser, and Mottaghi Golshan, Hamid. "Caristi's fixed point theorem and its equivalences in fuzzy metric spaces." Kybernetika 52.6 (2016): 929-942. <http://eudml.org/doc/287899>.

@article{Abbasi2016,
abstract = {In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.},
author = {Abbasi, Naser, Mottaghi Golshan, Hamid},
journal = {Kybernetika},
keywords = {fuzzy metric space; Ekeland variational principle; Caristi's fixed point theorem; Takahashi's maximization theorem; best approximation; topology; fuzzy metric spaces},
language = {eng},
number = {6},
pages = {929-942},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Caristi's fixed point theorem and its equivalences in fuzzy metric spaces},
url = {http://eudml.org/doc/287899},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Abbasi, Naser
AU - Mottaghi Golshan, Hamid
TI - Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 6
SP - 929
EP - 942
AB - In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
LA - eng
KW - fuzzy metric space; Ekeland variational principle; Caristi's fixed point theorem; Takahashi's maximization theorem; best approximation; topology; fuzzy metric spaces
UR - http://eudml.org/doc/287899
ER -

References

top
  1. Altun, I., Mihet, D., 10.1155/2010/782680, Fixed Point Theory Appl. 2010, Art. ID 782680, 11 pp. Zbl1191.54033MR2595842DOI10.1155/2010/782680
  2. Aubin, J.-P., Optima and equilibria. An introduction to nonlinear analysis. Translated from the French by Stephen Wilson. Second edition., Springer-Verlag, Graduate Texts in Mathematics 149, Berlin 1998. MR1729758
  3. Bae, J. S., Cho, E. W., Yeom, S. H., A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems., J. Korean Math. Soc. 31 (1994), 1, 29-48. MR1269448
  4. Banach, S., 10.4064/fm-3-1-133-181, Fundamenta Mathematicae 3 (1922), 1, 133-181. DOI10.4064/fm-3-1-133-181
  5. Brøndsted, A., 10.1090/s0002-9939-1976-0417867-x, Proc. Amer. Math. Soc. 60 (1976), 365-366. Zbl0385.54030MR0417867DOI10.1090/s0002-9939-1976-0417867-x
  6. Browder, F. E., On a theorem of Caristi and Kirk., In: Proc. Sem. Fixed point theory and its applications Dalhousie Univ., Halifax, 1975), Academic Press, New York 1976, pp. 23-27. Zbl0379.54016MR0461474
  7. Caristi, J., 10.1090/s0002-9947-1976-0394329-4, Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl0305.47029MR0394329DOI10.1090/s0002-9947-1976-0394329-4
  8. Caristi, J., Kirk, W. A., 10.1007/bfb0081133, In: Proc. Conf. The geometry of metric and linear spaces, Michigan State Univ., East Lansing 1974), Lecture Notes in Math. 490, Springer, Berlin 1975, pp. 74-83. Zbl0315.54052MR0399968DOI10.1007/bfb0081133
  9. Chang, S. S., Luo, Q., 10.1016/0165-0114(94)90014-0, Fuzzy Sets and Systems 64 (1994), 1, 119-125. Zbl0842.54041MR1281293DOI10.1016/0165-0114(94)90014-0
  10. Ekeland, I., Sur les problèmes variationnels., C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1057-A1059. Zbl0259.49027MR0310670
  11. Ekeland, I., 10.1016/0022-247x(74)90025-0, J. Math. Anal. Appl. 47 (1974), 324-353. Zbl0286.49015MR0346619DOI10.1016/0022-247x(74)90025-0
  12. Ekeland, I., 10.1090/s0273-0979-1979-14595-6, Bull. Amer. Math. Soc. 1 (1979), 3, 443-474. Zbl0441.49011MR0526967DOI10.1090/s0273-0979-1979-14595-6
  13. George, A., Veeramani, P., 10.1016/0165-0114(94)90162-7, Fuzzy Sets and Systems 64 (1994), 3, 395-399. Zbl0843.54014MR1289545DOI10.1016/0165-0114(94)90162-7
  14. George, A., Veeramani, P., Some theorems in fuzzy metric spaces., J. Fuzzy Math. 3 (1995), 4, 933-940. Zbl0870.54007MR1367026
  15. Grabiec, M., 10.1016/0165-0114(88)90064-4, Fuzzy Sets and Systems 27 (1988), 3, 385-389. Zbl0664.54032MR0956385DOI10.1016/0165-0114(88)90064-4
  16. Gregori, V., Miñana, J.-J., Morillas, S., 10.1016/j.fss.2011.12.008, Fuzzy Sets and Systems 204 (2012), 71-85. Zbl1259.54001MR2950797DOI10.1016/j.fss.2011.12.008
  17. Gregori, V., Morillas, S., Sapena, A., 10.1016/j.fss.2010.03.013, Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. Zbl1201.54011MR2652720DOI10.1016/j.fss.2010.03.013
  18. Gregori, V., Morillas, S., Sapena, A., 10.1016/j.fss.2010.10.019, Fuzzy Sets and Systems 170 (2011), 95-111. Zbl1210.94016MR2775611DOI10.1016/j.fss.2010.10.019
  19. Gregori, V., Romaguera, S., 10.1016/s0165-0114(02)00115-x, Fuzzy Sets and Systems 130 (2002), 3, 399-404. Zbl1010.54002MR1928435DOI10.1016/s0165-0114(02)00115-x
  20. Gregori, V., Romaguera, S., 10.1016/s0165-0114(03)00161-1, Fuzzy sets and systems 144 (2004), 3, 411-420. Zbl1057.54010MR2061403DOI10.1016/s0165-0114(03)00161-1
  21. Hadžić, O., Pap, E., 10.1007/978-94-017-1560-7, Kluwer Academic Publishers, Mathematics and its Applications 536, Dordrecht 2001. Zbl1265.54127MR1896451DOI10.1007/978-94-017-1560-7
  22. Jung, J. S., Cho, Y. J., Kang, S. M., Chang, S.-S., 10.1016/0165-0114(95)00084-4, Fuzzy Sets and Systems 79 (1996), 2, 239-250. Zbl0867.54018MR1388395DOI10.1016/0165-0114(95)00084-4
  23. Jung, J. S., Cho, Y. J., Kim, J. K., 10.1016/0165-0114(94)90234-8, Fuzzy Sets and Systems 61 (1994), 2, 199-207. Zbl0845.54004MR1262469DOI10.1016/0165-0114(94)90234-8
  24. Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Trends in Logic-Studia Logica Library 8, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
  25. Kramosil, I., Michálek, J., Fuzzy metrics and statistical metric spaces., Kybernetika 11 (1975), 5, 336-344. Zbl0319.54002MR0410633
  26. Lee, G. M., Lee, B. S., Jung, J. S., Chang, S.-S., 10.1016/s0165-0114(97)00034-1, Fuzzy Sets and Systems 101 (1999), 1, 143-152. Zbl0986.54015MR1658940DOI10.1016/s0165-0114(97)00034-1
  27. Menger, K., 10.1073/pnas.28.12.535, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl0063.03886MR0007576DOI10.1073/pnas.28.12.535
  28. Radu, V., Some remarks on the probabilistic contractions on fuzzy Menger spaces., Automat. Comput. Appl. Math. 11 (2003), 1, 125-131. MR2428258
  29. Rodríguez-López, J., Romaguera, S., 10.1016/j.fss.2003.09.007, Fuzzy Sets and Systems 147 (2004), 2, 273 -283. Zbl1069.54009MR2089291DOI10.1016/j.fss.2003.09.007
  30. Schweizer, B., Sklar, A., 10.2140/pjm.1960.10.313, Pacific J. Math. 10 (1960), 313-334. Zbl0136.39301MR0115153DOI10.2140/pjm.1960.10.313
  31. Schweizer, B., Sklar, A., Probabilistic metric spaces Zbl0546.60010
  32. Suzuki, T., 10.1016/s0022-247x(03)00470-0, J. Math. Anal. Appl. 286 (2003), 2, 453-458. Zbl1042.47036MR2008843DOI10.1016/s0022-247x(03)00470-0
  33. Suzuki, T., 10.1016/j.jmaa.2004.08.019, J. Math. Anal. Appl. 302 (2005), 2, 502-508. Zbl1059.54031MR2107850DOI10.1016/j.jmaa.2004.08.019
  34. Suzuki, T., Takahashi, W., 10.12775/TMNA.1996.040, Topol. Methods Nonlinear Anal. 8 (1997), 2, 371-382. Zbl0902.47050MR1483635DOI10.12775/TMNA.1996.040
  35. Takahashi, W., Existence theorems generalizing fixed point theorems for multivalued mappings., In: Fixed Point Theory and Aplications Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow 1991, pp. 397-406. Zbl0760.47029MR1122847
  36. Takahashi, W., Nonlinear functional analysis., Yokohama Publishers, Yokohama 2000. Zbl0997.47002MR1864294
  37. Zhu, J., Zhong, C.-K., Wang, G.-P., 10.1016/s0165-0114(97)00333-3, Fuzzy Sets and Systems 108 (1999), 3, 353-363. Zbl0946.49017MR1718330DOI10.1016/s0165-0114(97)00333-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.