Combinatorial interpretations for identities using chromatic partitions
Mateus Alegri; Wagner Ferreira Santos; Samuel Brito Silva
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 545-553
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAlegri, Mateus, Ferreira Santos, Wagner, and Brito Silva, Samuel. "Combinatorial interpretations for identities using chromatic partitions." Czechoslovak Mathematical Journal 71.2 (2021): 545-553. <http://eudml.org/doc/297880>.
@article{Alegri2021,
abstract = {We provide combinatorial interpretations for three new classes of partitions, the so-called chromatic partitions. Using only combinatorial arguments, we show that these partition identities resemble well-know ordinary partition identities.},
author = {Alegri, Mateus, Ferreira Santos, Wagner, Brito Silva, Samuel},
journal = {Czechoslovak Mathematical Journal},
keywords = {integer partition; chromatic partition; Ferrers graph; partition identity},
language = {eng},
number = {2},
pages = {545-553},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Combinatorial interpretations for identities using chromatic partitions},
url = {http://eudml.org/doc/297880},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Alegri, Mateus
AU - Ferreira Santos, Wagner
AU - Brito Silva, Samuel
TI - Combinatorial interpretations for identities using chromatic partitions
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 545
EP - 553
AB - We provide combinatorial interpretations for three new classes of partitions, the so-called chromatic partitions. Using only combinatorial arguments, we show that these partition identities resemble well-know ordinary partition identities.
LA - eng
KW - integer partition; chromatic partition; Ferrers graph; partition identity
UR - http://eudml.org/doc/297880
ER -
References
top- Alegri, M., On new identities involving chromatic overpartitions, J. Ramanujan Soc. Math. Math. Sci. 7 (2020), 109-118. (2020) Zbl1448.05009
- Andrews, G. E., 10.2307/2373804, Am. J. Math. 101 (1979), 735-742. (1979) Zbl0409.10006MR0533197DOI10.2307/2373804
- Andrews, G. E., Eriksson, K., 10.1017/CBO9781139167239, Cambridge University Press, Cambridge (2004). (2004) Zbl1073.11063MR2122332DOI10.1017/CBO9781139167239
- Bressoud, D. M., 10.2140/pjm.1978.77.71, Pac. J. Math. 77 (1978), 71-74. (1978) Zbl0362.10016MR0506017DOI10.2140/pjm.1978.77.71
- Corteel, S., Lovejoy, J., 10.1090/S0002-9947-03-03328-2, Trans. Am. Math. Soc. 356 (2004), 1623-1635. (2004) Zbl1040.11072MR2034322DOI10.1090/S0002-9947-03-03328-2
- Euler, L., De partitione numerorum, Caput XVI, Introductio in Analysin Infinitorum Leonardi Euleri Opera Omnia, Series Prima, Volumen Octavum. B. G. Teubner, Leipzig (1922), A. Krazer, F. Rudio Latin 9999JFM99999 48.0007.02. (1922) MR0016336
- Pak, I., 10.1007/s11139-006-9576-1, Ramanujan J. 12 (2006), 5-75. (2006) Zbl1103.05009MR2267263DOI10.1007/s11139-006-9576-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.