The (dis)connectedness of products of Hausdorff spaces in the box topology

Vitalij A. Chatyrko

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Volume: 62, Issue: 4, page 483-489
  • ISSN: 0010-2628

Abstract

top
In this paper the following two propositions are proved: (a) If X α , α A , is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product α A X α can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If X α , α A , is an infinite system of Brown Hausdorff topological spaces then the box product α A X α is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature.

How to cite

top

Chatyrko, Vitalij A.. "The (dis)connectedness of products of Hausdorff spaces in the box topology." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 483-489. <http://eudml.org/doc/297912>.

@article{Chatyrko2021,
abstract = {In this paper the following two propositions are proved: (a) If $X_\alpha $, $\alpha \in A$, is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product $\square _\{\alpha \in A\} X_\alpha $ can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If $X_\alpha $, $\alpha \in A$, is an infinite system of Brown Hausdorff topological spaces then the box product $\square _\{\alpha \in A\} X_\alpha $ is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature.},
author = {Chatyrko, Vitalij A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {box topology; connectedness; completely Hausdorff space; Urysohn space; Brown space},
language = {eng},
number = {4},
pages = {483-489},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The (dis)connectedness of products of Hausdorff spaces in the box topology},
url = {http://eudml.org/doc/297912},
volume = {62},
year = {2021},
}

TY - JOUR
AU - Chatyrko, Vitalij A.
TI - The (dis)connectedness of products of Hausdorff spaces in the box topology
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 483
EP - 489
AB - In this paper the following two propositions are proved: (a) If $X_\alpha $, $\alpha \in A$, is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product $\square _{\alpha \in A} X_\alpha $ can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If $X_\alpha $, $\alpha \in A$, is an infinite system of Brown Hausdorff topological spaces then the box product $\square _{\alpha \in A} X_\alpha $ is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature.
LA - eng
KW - box topology; connectedness; completely Hausdorff space; Urysohn space; Brown space
UR - http://eudml.org/doc/297912
ER -

References

top
  1. Acosta G., Madriz-Mendoza M., Dominguez J. D. C. A., 10.15406/oajmtp.2018.01.00042, Open Acc. J. Math. Theor. Phy. 1 (2018), no. 6, 242–247. DOI10.15406/oajmtp.2018.01.00042
  2. Bing R. H., 10.1090/S0002-9939-1953-0060806-9, Proc. Amer. Math. Soc. 4 (1953), 474. MR0060806DOI10.1090/S0002-9939-1953-0060806-9
  3. Chatyrko V. A., Karassev A., The (dis)connectedness of products in the box topology, Questions Answers Gen. Topology 31 (2013), no. 1, 11–21. MR3075890
  4. Chatyrko V. A., Nyagahakwa V., Vitali selectors in topological groups and related semigroups of sets, Questions Answers Gen. Topology 33 (2015), no. 2, 93–102. MR3444173
  5. Golomb S. W., A connected topology for integers, Amer. Math. Monthly 66 8 (1959), no. 8, 663–665. MR0107622
  6. Halimskiĭ E. D., The topologies of generalized segments, Dokl. Akad. Nauk SSSR 189 (1969), 740–743. MR0256359
  7. Hewitt E., 10.2307/1969089, Ann. of Math. 47 (1946), no. 3, 503–509. MR0017527DOI10.2307/1969089
  8. Jones F. B., Stone A. H., 10.4064/cm-22-2-239-244, Colloq. Math. 22 (1971), 239–244. MR0283764DOI10.4064/cm-22-2-239-244
  9. Kannan V., Rajagopalan M., 10.4064/cm-29-1-93-100, Colloq. Math. 29 (1974), 93–100, 159. MR0339068DOI10.4064/cm-29-1-93-100
  10. Kirch A. M., 10.1080/00029890.1969.12000163, Amer. Math. Monthly 76 (1969), 169–171. MR0239563DOI10.1080/00029890.1969.12000163
  11. Knight C. J., Box topologies, Quart. J. Math. Oxford Ser. (2) 15 (1964), 41–54. MR0160184
  12. Kong T. Y., Kopperman R., Meyer P. R., 10.1080/00029890.1991.12000810, Amer. Math. Monthly 98 (1991), no. 10, 901–917. MR1137537DOI10.1080/00029890.1991.12000810
  13. Lawrence L. B., Infinite-dimensional countable connected Hausdorff spaces, Houston J. Math. 20 (1994), no. 3, 539–546. MR1287993
  14. Miller G. G., 10.1090/S0002-9939-1970-0263005-0, Proc. Amer. Math. Soc. 26 (1970), 355–360. MR0263005DOI10.1090/S0002-9939-1970-0263005-0
  15. Munkres J. R., Topology, Prentice Hall, Upper Saddle River, 2000. Zbl0951.54001MR3728284
  16. Ritter G. X., 10.1080/00029890.1976.11994070, Amer. Math. Monthly 83 (1976), no. 3, 185–186. MR0391047DOI10.1080/00029890.1976.11994070
  17. Roy P., A countable connected Urysohn space with a dispersion point, Duke Math. J. 33 (1966), 331–333. MR0196701
  18. Shimrat M., 10.1093/qmath/5.1.304, Quart. J. Math. Oxford Ser. (2) 5 (1954), 304–311. MR0068204DOI10.1093/qmath/5.1.304
  19. Vought E. J., 10.4064/cm-28-2-205-209, Colloq. Math. 28 (1973), 205–209. MR0326655DOI10.4064/cm-28-2-205-209

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.