The (dis)connectedness of products of Hausdorff spaces in the box topology
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 4, page 483-489
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChatyrko, Vitalij A.. "The (dis)connectedness of products of Hausdorff spaces in the box topology." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 483-489. <http://eudml.org/doc/297912>.
@article{Chatyrko2021,
abstract = {In this paper the following two propositions are proved: (a) If $X_\alpha $, $\alpha \in A$, is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product $\square _\{\alpha \in A\} X_\alpha $ can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If $X_\alpha $, $\alpha \in A$, is an infinite system of Brown Hausdorff topological spaces then the box product $\square _\{\alpha \in A\} X_\alpha $ is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature.},
author = {Chatyrko, Vitalij A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {box topology; connectedness; completely Hausdorff space; Urysohn space; Brown space},
language = {eng},
number = {4},
pages = {483-489},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The (dis)connectedness of products of Hausdorff spaces in the box topology},
url = {http://eudml.org/doc/297912},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Chatyrko, Vitalij A.
TI - The (dis)connectedness of products of Hausdorff spaces in the box topology
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 483
EP - 489
AB - In this paper the following two propositions are proved: (a) If $X_\alpha $, $\alpha \in A$, is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product $\square _{\alpha \in A} X_\alpha $ can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If $X_\alpha $, $\alpha \in A$, is an infinite system of Brown Hausdorff topological spaces then the box product $\square _{\alpha \in A} X_\alpha $ is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature.
LA - eng
KW - box topology; connectedness; completely Hausdorff space; Urysohn space; Brown space
UR - http://eudml.org/doc/297912
ER -
References
top- Acosta G., Madriz-Mendoza M., Dominguez J. D. C. A., 10.15406/oajmtp.2018.01.00042, Open Acc. J. Math. Theor. Phy. 1 (2018), no. 6, 242–247. DOI10.15406/oajmtp.2018.01.00042
- Bing R. H., 10.1090/S0002-9939-1953-0060806-9, Proc. Amer. Math. Soc. 4 (1953), 474. MR0060806DOI10.1090/S0002-9939-1953-0060806-9
- Chatyrko V. A., Karassev A., The (dis)connectedness of products in the box topology, Questions Answers Gen. Topology 31 (2013), no. 1, 11–21. MR3075890
- Chatyrko V. A., Nyagahakwa V., Vitali selectors in topological groups and related semigroups of sets, Questions Answers Gen. Topology 33 (2015), no. 2, 93–102. MR3444173
- Golomb S. W., A connected topology for integers, Amer. Math. Monthly 66 8 (1959), no. 8, 663–665. MR0107622
- Halimskiĭ E. D., The topologies of generalized segments, Dokl. Akad. Nauk SSSR 189 (1969), 740–743. MR0256359
- Hewitt E., 10.2307/1969089, Ann. of Math. 47 (1946), no. 3, 503–509. MR0017527DOI10.2307/1969089
- Jones F. B., Stone A. H., 10.4064/cm-22-2-239-244, Colloq. Math. 22 (1971), 239–244. MR0283764DOI10.4064/cm-22-2-239-244
- Kannan V., Rajagopalan M., 10.4064/cm-29-1-93-100, Colloq. Math. 29 (1974), 93–100, 159. MR0339068DOI10.4064/cm-29-1-93-100
- Kirch A. M., 10.1080/00029890.1969.12000163, Amer. Math. Monthly 76 (1969), 169–171. MR0239563DOI10.1080/00029890.1969.12000163
- Knight C. J., Box topologies, Quart. J. Math. Oxford Ser. (2) 15 (1964), 41–54. MR0160184
- Kong T. Y., Kopperman R., Meyer P. R., 10.1080/00029890.1991.12000810, Amer. Math. Monthly 98 (1991), no. 10, 901–917. MR1137537DOI10.1080/00029890.1991.12000810
- Lawrence L. B., Infinite-dimensional countable connected Hausdorff spaces, Houston J. Math. 20 (1994), no. 3, 539–546. MR1287993
- Miller G. G., 10.1090/S0002-9939-1970-0263005-0, Proc. Amer. Math. Soc. 26 (1970), 355–360. MR0263005DOI10.1090/S0002-9939-1970-0263005-0
- Munkres J. R., Topology, Prentice Hall, Upper Saddle River, 2000. Zbl0951.54001MR3728284
- Ritter G. X., 10.1080/00029890.1976.11994070, Amer. Math. Monthly 83 (1976), no. 3, 185–186. MR0391047DOI10.1080/00029890.1976.11994070
- Roy P., A countable connected Urysohn space with a dispersion point, Duke Math. J. 33 (1966), 331–333. MR0196701
- Shimrat M., 10.1093/qmath/5.1.304, Quart. J. Math. Oxford Ser. (2) 5 (1954), 304–311. MR0068204DOI10.1093/qmath/5.1.304
- Vought E. J., 10.4064/cm-28-2-205-209, Colloq. Math. 28 (1973), 205–209. MR0326655DOI10.4064/cm-28-2-205-209
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.