Displaying similar documents to “The (dis)connectedness of products of Hausdorff spaces in the box topology”

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets

Ludwik Jaksztas (2011)

Fundamenta Mathematicae

Similarity:

Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map g σ . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set J 0 , σ is continuous at σ₀ as the function of the parameter σ ¯ if and only if H D ( J 0 , σ ) 4 / 3 . Since H D ( J 0 , σ ) > 4 / 3 on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of H D ( J 0 , σ ) on an open and dense subset of...

Infinite Iterated Function Systems Depending on a Parameter

Ludwik Jaksztas (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets J 0 , σ for the map f₀(z) = z²+1/4 on the parameter σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of J 0 , σ , given by Urbański and Zinsmeister. The closure of the limit set of our IFS ϕ σ , α n , k is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of...

A compact Hausdorff topology that is a T₁-complement of itself

Dmitri Shakhmatov, Michael Tkachenko (2002)

Fundamenta Mathematicae

Similarity:

Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces ( X , τ X ) and ( Y , τ Y ) are called T₁-complementary provided that there exists a bijection f: X → Y such that τ X and f - 1 ( U ) : U τ Y are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size 2 which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact...

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

The common division topology on

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider a topology τ S on the set of natural numbers. We then present properties of the topological space ( , τ S ) , some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014,...

On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets

Juan Rivera-Letelier (2001)

Fundamenta Mathematicae

Similarity:

Given d ≥ 2 consider the family of polynomials P c ( z ) = z d + c for c ∈ ℂ. Denote by J c the Julia set of P c and let d = c | J c i s c o n n e c t e d be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters c d : those for which the critical point 0 is not recurrent by P c and without parabolic cycles. The Hausdorff dimension of J c , denoted by H D ( J c ) , does not depend continuously on c at such c d ; on the other hand the function c H D ( J c ) is analytic in - d . Our first result asserts that there is still some...

A two-dimensional univoque set

Martijn de Vrie, Vilmos Komornik (2011)

Fundamenta Mathematicae

Similarity:

Let J ⊂ ℝ² be the set of couples (x,q) with q > 1 such that x has at least one representation of the form x = i = 1 c i q - i with integer coefficients c i satisfying 0 c i < q , i ≥ 1. In this case we say that ( c i ) = c c . . . is an expansion of x in base q. Let U be the set of couples (x,q) ∈ J such that x has exactly one expansion in base q. In this paper we deduce some topological and combinatorial properties of the set U. We characterize the closure of U, and we determine its Hausdorff dimension. For (x,q) ∈ J, we also...

Totally Brown subsets of the Golomb space and the Kirch space

José del Carmen Alberto-Domínguez, Gerardo Acosta, Gerardo Delgadillo-Piñón (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider the Golomb topology τ G on the set of natural numbers, as well as the Kirch topology τ K on . Then we examine subsets of these spaces which are totally Brown. Among other results, we characterize the arithmetic progressions which are either totally Brown or totally separated in ( , τ G ) . We also show that ( , τ G ) and ( , τ K ) are aposyndetic....

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Similarity:

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

On n -thin dense sets in powers of topological spaces

Adam Bartoš (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A subset of a product of topological spaces is called n -thin if every its two distinct points differ in at least n coordinates. We generalize a construction of Gruenhage, Natkaniec, and Piotrowski, and obtain, under CH, a countable T 3 space X without isolated points such that X n contains an n -thin dense subset, but X n + 1 does not contain any n -thin dense subset. We also observe that part of the construction can be carried out under MA.

Univoque sets for real numbers

Fan Lü, Bo Tan, Jun Wu (2014)

Fundamenta Mathematicae

Similarity:

For x ∈ (0,1), the univoque set for x, denoted (x), is defined to be the set of β ∈ (1,2) such that x has only one representation of the form x = x₁/β + x₂/β² + ⋯ with x i 0 , 1 . We prove that for any x ∈ (0,1), (x) contains a sequence β k k 1 increasing to 2. Moreover, (x) is a Lebesgue null set of Hausdorff dimension 1; both (x) and its closure ( x ) ¯ are nowhere dense.

Homeomorphism groups of Sierpiński carpets and Erdős space

Jan J. Dijkstra, Dave Visser (2010)

Fundamenta Mathematicae

Similarity:

Erdős space is the “rational” Hilbert space, that is, the set of vectors in ℓ² with all coordinates rational. Erdős proved that is one-dimensional and homeomorphic to its own square × , which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of . Let M n + 1 , n ∈ ℕ, be the n-dimensional Menger continuum in n + 1 , also known as the n-dimensional Sierpiński carpet, and let D be a countable dense subset of M n + 1 . We consider the topological group...

R z -supercontinuous functions

Davinder Singh, Brij Kishore Tyagi, Jeetendra Aggarwal, Jogendra K. Kohli (2015)

Mathematica Bohemica

Similarity:

A new class of functions called “ R z -supercontinuous functions” is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of R z -supercontinuous functions properly includes the class of R cl -supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of cl -supercontinuous ( clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983),...

T 2 and T 3 objects at p in the category of proximity spaces

Muammer Kula, Samed Özkan (2020)

Mathematica Bohemica

Similarity:

In previous papers, various notions of pre-Hausdorff, Hausdorff and regular objects at a point p in a topological category were introduced and compared. The main objective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and regular objects locally in the category of proximity spaces. Furthermore, the relationships that arise among the various Pre T 2 , T i , i = 0 , 1 , 2 , 3 , structures at a point p are investigated. Finally, we examine the relationships between the generalized...

On the hyperspace C n ( X ) / C n K ( X )

José G. Anaya, Enrique Castañeda-Alvarado, José A. Martínez-Cortez (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a continuum and n a positive integer. Let C n ( X ) be the hyperspace of all nonempty closed subsets of X with at most n components, endowed with the Hausdorff metric. For K compact subset of X , define the hyperspace C n K ( X ) = { A C n ( X ) : K A } . In this paper, we consider the hyperspace C K n ( X ) = C n ( X ) / C n K ( X ) , which can be a tool to study the space C n ( X ) . We study this hyperspace in the class of finite graphs and in general, we prove some properties such as: aposyndesis, local connectedness, arcwise disconnectedness, and contractibility. ...

The growth speed of digits in infinite iterated function systems

Chun-Yun Cao, Bao-Wei Wang, Jun Wu (2013)

Studia Mathematica

Similarity:

Let f n 1 be an infinite iterated function system on [0,1] satisfying the open set condition with the open set (0,1) and let Λ be its attractor. Then to any x ∈ Λ (except at most countably many points) corresponds a unique sequence a ( x ) n 1 of integers, called the digit sequence of x, such that x = l i m n f a ( x ) f a ( x ) ( 1 ) . We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set x Λ : a ( x ) B ( n 1 ) , l i m n a ( x ) = for any infinite subset B ⊂ ℕ, a question posed by...

On non-normality points, Tychonoff products and Suslin number

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let a space X be Tychonoff product α < τ X α of τ -many Tychonoff nonsingle point spaces X α . Let Suslin number of X be strictly less than the cofinality of τ . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification β X . In particular, this is true if X is either R τ or ω τ and a cardinal τ is infinite and not countably cofinal.