An interior-point algorithm for semidefinite least-squares problems
Applications of Mathematics (2022)
- Volume: 67, Issue: 3, page 371-391
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDaili, Chafia, and Achache, Mohamed. "An interior-point algorithm for semidefinite least-squares problems." Applications of Mathematics 67.3 (2022): 371-391. <http://eudml.org/doc/297924>.
@article{Daili2022,
abstract = {We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter $\beta $ which defines the size of the neighborhood of the central-path and of the parameter $\theta $ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges to the optimal solution of SDLS. Moreover, we obtain the currently best known iteration bound for the algorithm with a short-update method, namely, $\mathcal \{O\}(\sqrt\{n\}\log (n/\epsilon ))$. Finally, we report some numerical results to illustrate the efficiency of our proposed algorithm.},
author = {Daili, Chafia, Achache, Mohamed},
journal = {Applications of Mathematics},
keywords = {semidefinite least-squares problem; interior-point method; polynomial complexity},
language = {eng},
number = {3},
pages = {371-391},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An interior-point algorithm for semidefinite least-squares problems},
url = {http://eudml.org/doc/297924},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Daili, Chafia
AU - Achache, Mohamed
TI - An interior-point algorithm for semidefinite least-squares problems
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 371
EP - 391
AB - We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter $\beta $ which defines the size of the neighborhood of the central-path and of the parameter $\theta $ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges to the optimal solution of SDLS. Moreover, we obtain the currently best known iteration bound for the algorithm with a short-update method, namely, $\mathcal {O}(\sqrt{n}\log (n/\epsilon ))$. Finally, we report some numerical results to illustrate the efficiency of our proposed algorithm.
LA - eng
KW - semidefinite least-squares problem; interior-point method; polynomial complexity
UR - http://eudml.org/doc/297924
ER -
References
top- Achache, M., 10.1590/S0101-82052006000100005, Comput. Appl. Math. 25 (2006), 97-110. (2006) Zbl1213.90187MR2267615DOI10.1590/S0101-82052006000100005
- Achache, M., 10.1007/s10114-015-1314-4, Acta Math. Sin., Engl. Ser. 31 (2015), 543-556. (2015) Zbl1308.65086MR3306664DOI10.1007/s10114-015-1314-4
- Achache, M., 10.1007/s13370-015-0363-2, Afr. Mat. 27 (2016), 591-601. (2016) Zbl1378.90089MR3500476DOI10.1007/s13370-015-0363-2
- Achache, M., Boudiaf, N., Complexity analysis of primal-dual algorithms for the semidefinite linear complementarity problem, Rev. Anal. Numér. Théor. Approx. 40 (2011), 95-106. (2011) Zbl1274.90371MR3059815
- Achache, M., Guerra, L., 10.1016/j.amc.2013.12.070, Appl. Math. Comput. 231 (2014), 581-590. (2014) Zbl1410.90230MR3174056DOI10.1016/j.amc.2013.12.070
- Achache, M., Roumili, H., Keraghel, A., 10.1016/j.amc.2006.07.135, Appl. Math. Comput. 186 (2007), 1472-1479. (2007) Zbl1117.65082MR2316940DOI10.1016/j.amc.2006.07.135
- Achache, M., Tabchouche, N., 10.1007/s11590-018-1328-9, Optim. Lett. 13 (2019), 1039-1057. (2019) Zbl1425.90116MR3956989DOI10.1007/s11590-018-1328-9
- Alizadeh, F., Haeberly, J.-P. A., Overton, M. L., A New Primal-Dual Interior-Point Methods for Semidefinite Programming, Technical Report 659. Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York (1994). (1994) MR1636549
- Alzalg, B., 10.1007/s11590-019-01404-1, Optim. Lett. 14 (2020), 729-746. (2020) Zbl1442.90177MR4075446DOI10.1007/s11590-019-01404-1
- Boyd, S., Vandenberghe, L., 10.1017/CBO9780511804441, Cambridge University Press, Cambridge (2004). (2004) Zbl1058.90049MR2061575DOI10.1017/CBO9780511804441
- Boyd, S., Xiao, L., 10.1137/040609902, SIAM J. Matrix Anal. Appl. 27 (2005), 532-546. (2005) Zbl1099.65039MR2179687DOI10.1137/040609902
- Cherif, L. B., Merikhi, B., 10.1051/ro/2018061, RAIRO, Oper. Res. 53 (2019), 29-38. (2019) Zbl1414.90264MR3899028DOI10.1051/ro/2018061
- Davies, P. I., Higham, N. J., 10.1023/A:1022384216930, BIT 40 (2000), 640-651. (2000) Zbl0969.65036MR1799307DOI10.1023/A:1022384216930
- Klerk, E. de, Interior Point Methods for Semidefinite Programming: Thesis Technische Universiteit Delf, (1997). (1997)
- Helmberg, C., Rendl, F., Vanderbei, R. J., Wolkowicz, H., 10.1137/0806020, SIAM J. Optim. 6 (1996), 342-361. (1996) Zbl0853.65066MR1387330DOI10.1137/0806020
- Henrion, D., Malick, J., SDLS: A Matlab package for solving conic least-squares problems. Version 1.2, Available at https://homepages.laas.fr/henrion/software/sdls/ (2009). (2009)
- Higham, N. J., 10.1093/imanum/22.3.329, IMA J. Numer. Anal. 22 (2002), 329-343. (2002) Zbl1006.65036MR1918653DOI10.1093/imanum/22.3.329
- Kettab, S., Benterki, D., 10.1051/ro/2014055, RAIRO, Oper. Res. 49 (2015), 555-568. (2015) Zbl1327.90179MR3349134DOI10.1051/ro/2014055
- Kojima, M., Shindoh, S., Hara, S., 10.1137/S1052623494269035, SIAM J. Optim. 7 (1997), 86-125. (1997) Zbl0872.90098MR1430559DOI10.1137/S1052623494269035
- Krislock, N. G. B., Numerical Solution of Semidefinite Constrained Least Squares Problems: A Thesis, University of British Columbia, Vancouver (2003). (2003)
- Malick, J., 10.1137/S0895479802413856, SIAM J. Matrix Anal. Appl. 26 (2004), 272-284. (2004) Zbl1080.65027MR2112861DOI10.1137/S0895479802413856
- Malick, J., Applications of SDP least-squares in finance and combinatorics, CNRS, Lab. J. Kuntzmann, Grenoble CORE Math. Prog. Seminar-11 March (2008). (2008)
- Monteiro, R. D. C., 10.1137/S1052623495293056, SIAM J. Optim. 7 (1997), 663-678. (1997) Zbl0913.65051MR1462060DOI10.1137/S1052623495293056
- Nesterov, Y. E., Todd, M. J., 10.1287/moor.22.1.1, Math. Oper. Res. 22 (1997), 1-42. (1997) Zbl0871.90064MR1436572DOI10.1287/moor.22.1.1
- Nesterov, Y. E., Todd, M. J., 10.1137/S1052623495290209, SIAM J. Optim. 8 (1998), 324-364. (1998) Zbl0922.90110MR1618802DOI10.1137/S1052623495290209
- Qian, X., Continuous Methods for Convex Programming and Convex Semidefinite Programming: PhD. Thesis, Hong Kong Baptist University, Hong Kong (2017). (2017)
- Todd, M. J., 10.1080/10556789908805745, Optim. Methods Softw. 11 (1999), 1-46. (1999) Zbl0971.90109MR1777451DOI10.1080/10556789908805745
- Toh, K. C., Todd, M. J., Tütüncü, R. H., 10.1080/10556789908805762, Optim. Methods Softw. 11 (1999), 545-581. (1999) Zbl0997.90060MR1778429DOI10.1080/10556789908805762
- Ye, Y., 10.1002/9781118032701, Wiley-Interscience Series in Discrete Mathematics and Optimization. John-Wiley & Sons, Chichester (1997). (1997) Zbl0943.90070MR1481160DOI10.1002/9781118032701
- Zhang, Y., 10.1137/S1052623495296115, SIAM J. Optim. 8 (1998), 365-386. (1998) Zbl0913.65050MR1618806DOI10.1137/S1052623495296115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.