Displaying similar documents to “An interior-point algorithm for semidefinite least-squares problems”

On the weighted Euclidean matching problem in d

Birgit Anthes, Ludger Rüschendorf (2001)

Applicationes Mathematicae

Similarity:

A partitioning algorithm for the Euclidean matching problem in d is introduced and analyzed in a probabilistic model. The algorithm uses elements from the fixed dissection algorithm of Karp and Steele (1985) and the Zig-Zag algorithm of Halton and Terada (1982) for the traveling salesman problem. The algorithm runs in expected time n ( l o g n ) p - 1 and approximates the optimal matching in the probabilistic sense.

A tight bound of modified iterative hard thresholding algorithm for compressed sensing

Jinyao Ma, Haibin Zhang, Shanshan Yang, Jiaojiao Jiang (2023)

Applications of Mathematics

Similarity:

We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from δ 3 s - 2 k < 1 32 0 . 1768 to δ 3 s - 2 k < 5 - 1 4 0 . 309 , where δ 3 s - 2 k is...

The adaptation of the k -means algorithm to solving the multiple ellipses detection problem by using an initial approximation obtained by the DIRECT global optimization algorithm

Rudolf Scitovski, Kristian Sabo (2019)

Applications of Mathematics

Similarity:

We consider the multiple ellipses detection problem on the basis of a data points set coming from a number of ellipses in the plane not known in advance, whereby an ellipse E is viewed as a Mahalanobis circle with center S , radius r , and some positive definite matrix Σ . A very efficient method for solving this problem is proposed. The method uses a modification of the k -means algorithm for Mahalanobis-circle centers. The initial approximation consists of the set of circles whose centers...

An improvement of Euclid's algorithm

Zítko, Jan, Kuřátko, Jan

Similarity:

The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using c - s transformation and Q R -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.

Computation of linear algebraic equations with solvability verification over multi-agent networks

Xianlin Zeng, Kai Cao (2017)

Kybernetika

Similarity:

In this paper, we consider the problem of solving a linear algebraic equation A x = b in a distributed way by a multi-agent system with a solvability verification requirement. In the problem formulation, each agent knows a few columns of A , different from the previous results with assuming that each agent knows a few rows of A and b . Then, a distributed continuous-time algorithm is proposed for solving the linear algebraic equation from a distributed constrained optimization viewpoint. The...

An adaptive s -step conjugate gradient algorithm with dynamic basis updating

Erin Claire Carson (2020)

Applications of Mathematics

Similarity:

The adaptive s -step CG algorithm is a solver for sparse symmetric positive definite linear systems designed to reduce the synchronization cost per iteration while still achieving a user-specified accuracy requirement. In this work, we improve the adaptive s -step conjugate gradient algorithm by the use of iteratively updated estimates of the largest and smallest Ritz values, which give approximations of the largest and smallest eigenvalues of A , using a technique due to G. Meurant and...

A stochastic mirror-descent algorithm for solving A X B = C over an multi-agent system

Yinghui Wang, Songsong Cheng (2021)

Kybernetika

Similarity:

In this paper, we consider a distributed stochastic computation of A X B = C with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of A X B = C , we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm....