Tykhonov well-posedness of a heat transfer problem with unilateral constraints

Mircea Sofonea; Domingo A. Tarzia

Applications of Mathematics (2022)

  • Volume: 67, Issue: 2, page 167-197
  • ISSN: 0862-7940

Abstract

top
We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D d and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by 𝒫 . We associate to Problem 𝒫 an optimal control problem, denoted by 𝒬 . Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K ˜ , we provide results concerning the well-posedness of problems 𝒫 and 𝒬 . Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem 𝒫 , constructed with particular choices of G and K ˜ . We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.

How to cite

top

Sofonea, Mircea, and Tarzia, Domingo A.. "Tykhonov well-posedness of a heat transfer problem with unilateral constraints." Applications of Mathematics 67.2 (2022): 167-197. <http://eudml.org/doc/297926>.

@article{Sofonea2022,
abstract = {We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain $D\subset \mathbb \{R\}^d$ and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by $\mathcal \{P\}$. We associate to Problem $\mathcal \{P\}$ an optimal control problem, denoted by $\mathcal \{Q\}$. Then, using appropriate Tykhonov triples, governed by a nonlinear operator $G$ and a convex $\widetilde\{K\}$, we provide results concerning the well-posedness of problems $\mathcal \{P\}$ and $\mathcal \{Q\}$. Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem $\mathcal \{P\}$, constructed with particular choices of $G$ and $\widetilde\{K\}$. We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.},
author = {Sofonea, Mircea, Tarzia, Domingo A.},
journal = {Applications of Mathematics},
keywords = {heat transfer problem; unilateral constraint; subdifferential boundary condition; hemivariational inequality; optimal control; Tykhonov well-posedness; approximating sequence; convergence results},
language = {eng},
number = {2},
pages = {167-197},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tykhonov well-posedness of a heat transfer problem with unilateral constraints},
url = {http://eudml.org/doc/297926},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Sofonea, Mircea
AU - Tarzia, Domingo A.
TI - Tykhonov well-posedness of a heat transfer problem with unilateral constraints
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 167
EP - 197
AB - We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain $D\subset \mathbb {R}^d$ and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by $\mathcal {P}$. We associate to Problem $\mathcal {P}$ an optimal control problem, denoted by $\mathcal {Q}$. Then, using appropriate Tykhonov triples, governed by a nonlinear operator $G$ and a convex $\widetilde{K}$, we provide results concerning the well-posedness of problems $\mathcal {P}$ and $\mathcal {Q}$. Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem $\mathcal {P}$, constructed with particular choices of $G$ and $\widetilde{K}$. We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.
LA - eng
KW - heat transfer problem; unilateral constraint; subdifferential boundary condition; hemivariational inequality; optimal control; Tykhonov well-posedness; approximating sequence; convergence results
UR - http://eudml.org/doc/297926
ER -

References

top
  1. Baiocchi, C., Capelo, A., Variational and Quasivariational Inequalities: Applications to Free Boundary Problems, A Wiley-Interscience Publication. John Wiley, Chichester (1984). (1984) Zbl0551.49007MR0745619
  2. Barbu, V., Optimal Control of Variational Inequalities, Research Notes in Mathematics 100. Pitman, Boston (1984). (1984) Zbl0574.49005MR0742624
  3. Boukrouche, M., Tarzia, D. A., 10.1016/j.nonrwa.2011.01.003, Nonlinear Anal., Real World Appl. 12 (2011), 2211-2224. (2011) Zbl1225.49013MR2801013DOI10.1016/j.nonrwa.2011.01.003
  4. Boukrouche, M., Tarzia, D. A., 10.1007/s10589-011-9438-7, Comput. Optim. Appl. 53 (2012), 375-393. (2012) Zbl1260.49009MR2988166DOI10.1007/s10589-011-9438-7
  5. Capatina, A., 10.1007/978-3-319-10163-7, Advances in Mechanics and Mathematics 31. Springer, Cham (2014). (2014) Zbl1405.49001MR3241640DOI10.1007/978-3-319-10163-7
  6. Čoban, M. M., Kenderov, P. S., Revalski, J. P., 10.1112/S0025579300013152, Mathematika 36 (1989), 301-324. (1989) Zbl0679.49010MR1045790DOI10.1112/S0025579300013152
  7. Dontchev, A. L., Zolezzi, T., 10.1007/BFb0084195, Lecture Notes in Mathematics 1543. Springer, Berlin (1993). (1993) Zbl0797.49001MR1239439DOI10.1007/BFb0084195
  8. Friedman, A., 10.1137/0324025, SIAM J. Control Optim. 24 (1986), 439-451. (1986) Zbl0604.49007MR0838049DOI10.1137/0324025
  9. Glowinski, R., 10.1007/978-3-662-12613-4, Springer Series in Computational Physics. Springer, New York (1984). (1984) Zbl0536.65054MR0737005DOI10.1007/978-3-662-12613-4
  10. Goeleven, D., Mentagui, D., 10.1080/01630569508816652, Numer. Funct. Anal. Optim. 16 (1995), 909-921. (1995) Zbl0848.49013MR1355279DOI10.1080/01630569508816652
  11. Han, W., Reddy, B. D., 10.1007/978-1-4614-5940-8, Interdisciplinary Applied Mathematics 9. Springer, New York (2013). (2013) Zbl1258.74002MR3012574DOI10.1007/978-1-4614-5940-8
  12. Han, W., Sofonea, M., 10.1017/S0962492919000023, Acta Numerica 28 (2019), 175-286. (2019) Zbl1433.65296MR3963506DOI10.1017/S0962492919000023
  13. Haslinger, J., Miettinen, M., Panagiotopoulos, P. D., 10.1007/978-1-4757-5233-5, Nonconvex Optimization and Its Applications 35. Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0949.65069MR1784436DOI10.1007/978-1-4757-5233-5
  14. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J., 10.1007/978-1-4612-1048-1, Applied Mathematical Sciences 66. Springer, New York (1988). (1988) Zbl0654.73019MR0952855DOI10.1007/978-1-4612-1048-1
  15. Huang, X. X., 10.1007/s001860000100, Math. Methods Oper. Res. 53 (2001), 101-116. (2001) Zbl1018.49019MR1825251DOI10.1007/s001860000100
  16. Huang, X. X., Yang, X. Q., 10.1137/040614943, SIAM J. Optim. 17 (2006), 243-258. (2006) Zbl1137.49024MR2219152DOI10.1137/040614943
  17. Kikuchi, N., Oden, J. T., 10.1137/1.9781611970845, SIAM Studies in Applied Mathematics 8. SIAM, Philadelphia (1988). (1988) Zbl0685.73002MR0961258DOI10.1137/1.9781611970845
  18. Kinderlehrer, D., Stampacchia, G., 10.1137/1.9780898719451, Classics in Applied Mathematics 31. SIAM, Philadelphia (2000). (2000) Zbl0988.49003MR1786735DOI10.1137/1.9780898719451
  19. Lions, J.-L., Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris (1968), French. (1968) Zbl0179.41801MR0244606
  20. Lucchetti, R., 10.1007/0-387-31082-7, CMS Books in Mathehmatics 22. Springer, New York (2006). (2006) Zbl1106.49001MR2179578DOI10.1007/0-387-31082-7
  21. Lucchetti, R., Patrone, F., 10.1080/01630568108816100, Numer. Funct. Anal. Optim. 3 (1981), 461-476. (1981) Zbl0479.49025MR0636739DOI10.1080/01630568108816100
  22. Lucchetti, R., Patrone, F., 10.1080/01630568308816145, Numer. Funct. Anal. Optim. 5 (1983), 349-361. (1983) Zbl0517.49007MR0703113DOI10.1080/01630568308816145
  23. Matei, A., Micu, S., 10.1016/j.na.2010.10.034, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1641-1652. (2011) Zbl1428.74162MR2764365DOI10.1016/j.na.2010.10.034
  24. Matei, A., Micu, S., Niţă, C., 10.1177/1081286517718605, Math. Mech. Solids 23 (2018), 308-328. (2018) Zbl1404.74114MR3776297DOI10.1177/1081286517718605
  25. Mignot, F., 10.1016/0022-1236(76)90017-3, J. Funct. Anal. 22 (1976), 130-185 French. (1976) Zbl0364.49003MR0423155DOI10.1016/0022-1236(76)90017-3
  26. Mignot, F., Puel, J.-P., 10.1137/0322028, SIAM J. Control Optim. 22 (1984), 466-476. (1984) Zbl0561.49007MR0739836DOI10.1137/0322028
  27. Migórski, S., Ochal, A., Sofonea, M., 10.1007/978-1-4614-4232-5, Advances in Mechanics and Mathematics 26. Springer, New York (2013). (2013) Zbl1262.49001MR2976197DOI10.1007/978-1-4614-4232-5
  28. Naniewicz, Z., Panagiotopoulos, P. D., Mathematical Theory of Hemivariational Inequalities and Applications, Pure and Applied Mathematics, Marcel Dekker 188. Marcel Dekker, New York (1994). (1994) Zbl0968.49008MR1304257
  29. Neitaanmäki, P., Sprekels, J., Tiba, D., 10.1007/b138797, Springer Monographs in Mathematics. Springer, New York (2006). (2006) Zbl1106.49002MR2183776DOI10.1007/b138797
  30. Panagiotopoulos, P. D., 10.1007/978-1-4612-5152-1, Birkhäuser, Boston (1985). (1985) Zbl0579.73014MR0896909DOI10.1007/978-1-4612-5152-1
  31. Panagiotopoulos, P. D., 10.1007/978-3-642-51677-1, Springer, Berlin (1993). (1993) Zbl0826.73002MR1385670DOI10.1007/978-3-642-51677-1
  32. Peng, Z., 10.1137/19M1249102, SIAM J. Control Optim. 58 (2020), 2236-2255. (2020) Zbl07237871MR4128999DOI10.1137/19M1249102
  33. Peng, Z., Kunisch, K., 10.1007/s10957-018-1303-8, J. Optim. Theory Appl. 178 (2018), 1-25. (2018) Zbl06931878MR3818360DOI10.1007/s10957-018-1303-8
  34. Sofonea, M., 10.1007/s00245-017-9450-0, Appl. Math. Optim. 79 (2019), 621-646. (2019) Zbl07068063MR3951711DOI10.1007/s00245-017-9450-0
  35. Sofonea, M., 10.1007/978-3-030-15242-0_13, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications Birkhäuser, Cham (2019), 445-489. (2019) Zbl07203273MR3970451DOI10.1007/978-3-030-15242-0_13
  36. Sofonea, M., Bollati, J., Tarzia, D. A., 10.1016/j.jmaa.2020.124567, J. Math. Anal. Appl. 493 (2021), Article ID 124567, 23 pages. (2021) Zbl07267881MR4147630DOI10.1016/j.jmaa.2020.124567
  37. Sofonea, M., Migórski, S., 10.1201/9781315153261, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2018). (2018) Zbl1384.49002MR3752610DOI10.1201/9781315153261
  38. Sofonea, M., Tarzia, D. A., 10.1080/01630563.2020.1772288, Numer. Func. Anal. Optim. 41 (2020), 1326-1351. (2020) Zbl07241791MR4128526DOI10.1080/01630563.2020.1772288
  39. Sofonea, M., Tarzia, D. A., 10.1007/s00009-020-01577-5, Mediterr. J. Math. 17 (2020), Article ID 150, 21 pages. (2020) Zbl07246872MR4137848DOI10.1007/s00009-020-01577-5
  40. Sofonea, M., Xiao, Y.-B., 10.1007/s10957-019-01549-0, J. Optim. Theory Appl. 183 (2019), 139-157. (2019) Zbl1425.49005MR3989301DOI10.1007/s10957-019-01549-0
  41. Sofonea, M., Xiao, Y.-B., Tykhonov well-posedness of elliptic variational-hemivariational inequalities, Electron. J. Differ. Equ. 2019 (2019), Article ID 64, 19 pages. (2019) Zbl1415.49009MR3956504
  42. Tikhonov, A. N., 10.1016/0041-5553(66)90003-6, U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 28-33 translation from Zh. Vychisl. Mat. Mat. Fiz. 6 1966 631-634. (1966) Zbl0212.23803MR0198308DOI10.1016/0041-5553(66)90003-6
  43. Xiao, Y.-B., Huang, N.-J., Wong, M.-M., 10.11650/twjm/1500406298, Taiwanese J. Math. 15 (2011), 1261-1276. (2011) Zbl1239.49013MR2829910DOI10.11650/twjm/1500406298
  44. Xiao, Y.-B., Sofonea, M., 10.1007/s00245-019-09563-4, Appl. Math. Optim. 83 (2021), 789-812. (2021) Zbl1461.49013MR4239799DOI10.1007/s00245-019-09563-4
  45. Zolezzi, T., 10.1007/BF02192292, J. Optim. Theory Appl. 91 (1996), 257-266. (1996) Zbl0873.90094MR1411643DOI10.1007/BF02192292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.