Tykhonov well-posedness of a heat transfer problem with unilateral constraints
Mircea Sofonea; Domingo A. Tarzia
Applications of Mathematics (2022)
- Volume: 67, Issue: 2, page 167-197
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSofonea, Mircea, and Tarzia, Domingo A.. "Tykhonov well-posedness of a heat transfer problem with unilateral constraints." Applications of Mathematics 67.2 (2022): 167-197. <http://eudml.org/doc/297926>.
@article{Sofonea2022,
abstract = {We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain $D\subset \mathbb \{R\}^d$ and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by $\mathcal \{P\}$. We associate to Problem $\mathcal \{P\}$ an optimal control problem, denoted by $\mathcal \{Q\}$. Then, using appropriate Tykhonov triples, governed by a nonlinear operator $G$ and a convex $\widetilde\{K\}$, we provide results concerning the well-posedness of problems $\mathcal \{P\}$ and $\mathcal \{Q\}$. Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem $\mathcal \{P\}$, constructed with particular choices of $G$ and $\widetilde\{K\}$. We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.},
author = {Sofonea, Mircea, Tarzia, Domingo A.},
journal = {Applications of Mathematics},
keywords = {heat transfer problem; unilateral constraint; subdifferential boundary condition; hemivariational inequality; optimal control; Tykhonov well-posedness; approximating sequence; convergence results},
language = {eng},
number = {2},
pages = {167-197},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tykhonov well-posedness of a heat transfer problem with unilateral constraints},
url = {http://eudml.org/doc/297926},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Sofonea, Mircea
AU - Tarzia, Domingo A.
TI - Tykhonov well-posedness of a heat transfer problem with unilateral constraints
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 167
EP - 197
AB - We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain $D\subset \mathbb {R}^d$ and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by $\mathcal {P}$. We associate to Problem $\mathcal {P}$ an optimal control problem, denoted by $\mathcal {Q}$. Then, using appropriate Tykhonov triples, governed by a nonlinear operator $G$ and a convex $\widetilde{K}$, we provide results concerning the well-posedness of problems $\mathcal {P}$ and $\mathcal {Q}$. Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem $\mathcal {P}$, constructed with particular choices of $G$ and $\widetilde{K}$. We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.
LA - eng
KW - heat transfer problem; unilateral constraint; subdifferential boundary condition; hemivariational inequality; optimal control; Tykhonov well-posedness; approximating sequence; convergence results
UR - http://eudml.org/doc/297926
ER -
References
top- Baiocchi, C., Capelo, A., Variational and Quasivariational Inequalities: Applications to Free Boundary Problems, A Wiley-Interscience Publication. John Wiley, Chichester (1984). (1984) Zbl0551.49007MR0745619
- Barbu, V., Optimal Control of Variational Inequalities, Research Notes in Mathematics 100. Pitman, Boston (1984). (1984) Zbl0574.49005MR0742624
- Boukrouche, M., Tarzia, D. A., 10.1016/j.nonrwa.2011.01.003, Nonlinear Anal., Real World Appl. 12 (2011), 2211-2224. (2011) Zbl1225.49013MR2801013DOI10.1016/j.nonrwa.2011.01.003
- Boukrouche, M., Tarzia, D. A., 10.1007/s10589-011-9438-7, Comput. Optim. Appl. 53 (2012), 375-393. (2012) Zbl1260.49009MR2988166DOI10.1007/s10589-011-9438-7
- Capatina, A., 10.1007/978-3-319-10163-7, Advances in Mechanics and Mathematics 31. Springer, Cham (2014). (2014) Zbl1405.49001MR3241640DOI10.1007/978-3-319-10163-7
- Čoban, M. M., Kenderov, P. S., Revalski, J. P., 10.1112/S0025579300013152, Mathematika 36 (1989), 301-324. (1989) Zbl0679.49010MR1045790DOI10.1112/S0025579300013152
- Dontchev, A. L., Zolezzi, T., 10.1007/BFb0084195, Lecture Notes in Mathematics 1543. Springer, Berlin (1993). (1993) Zbl0797.49001MR1239439DOI10.1007/BFb0084195
- Friedman, A., 10.1137/0324025, SIAM J. Control Optim. 24 (1986), 439-451. (1986) Zbl0604.49007MR0838049DOI10.1137/0324025
- Glowinski, R., 10.1007/978-3-662-12613-4, Springer Series in Computational Physics. Springer, New York (1984). (1984) Zbl0536.65054MR0737005DOI10.1007/978-3-662-12613-4
- Goeleven, D., Mentagui, D., 10.1080/01630569508816652, Numer. Funct. Anal. Optim. 16 (1995), 909-921. (1995) Zbl0848.49013MR1355279DOI10.1080/01630569508816652
- Han, W., Reddy, B. D., 10.1007/978-1-4614-5940-8, Interdisciplinary Applied Mathematics 9. Springer, New York (2013). (2013) Zbl1258.74002MR3012574DOI10.1007/978-1-4614-5940-8
- Han, W., Sofonea, M., 10.1017/S0962492919000023, Acta Numerica 28 (2019), 175-286. (2019) Zbl1433.65296MR3963506DOI10.1017/S0962492919000023
- Haslinger, J., Miettinen, M., Panagiotopoulos, P. D., 10.1007/978-1-4757-5233-5, Nonconvex Optimization and Its Applications 35. Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0949.65069MR1784436DOI10.1007/978-1-4757-5233-5
- Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J., 10.1007/978-1-4612-1048-1, Applied Mathematical Sciences 66. Springer, New York (1988). (1988) Zbl0654.73019MR0952855DOI10.1007/978-1-4612-1048-1
- Huang, X. X., 10.1007/s001860000100, Math. Methods Oper. Res. 53 (2001), 101-116. (2001) Zbl1018.49019MR1825251DOI10.1007/s001860000100
- Huang, X. X., Yang, X. Q., 10.1137/040614943, SIAM J. Optim. 17 (2006), 243-258. (2006) Zbl1137.49024MR2219152DOI10.1137/040614943
- Kikuchi, N., Oden, J. T., 10.1137/1.9781611970845, SIAM Studies in Applied Mathematics 8. SIAM, Philadelphia (1988). (1988) Zbl0685.73002MR0961258DOI10.1137/1.9781611970845
- Kinderlehrer, D., Stampacchia, G., 10.1137/1.9780898719451, Classics in Applied Mathematics 31. SIAM, Philadelphia (2000). (2000) Zbl0988.49003MR1786735DOI10.1137/1.9780898719451
- Lions, J.-L., Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris (1968), French. (1968) Zbl0179.41801MR0244606
- Lucchetti, R., 10.1007/0-387-31082-7, CMS Books in Mathehmatics 22. Springer, New York (2006). (2006) Zbl1106.49001MR2179578DOI10.1007/0-387-31082-7
- Lucchetti, R., Patrone, F., 10.1080/01630568108816100, Numer. Funct. Anal. Optim. 3 (1981), 461-476. (1981) Zbl0479.49025MR0636739DOI10.1080/01630568108816100
- Lucchetti, R., Patrone, F., 10.1080/01630568308816145, Numer. Funct. Anal. Optim. 5 (1983), 349-361. (1983) Zbl0517.49007MR0703113DOI10.1080/01630568308816145
- Matei, A., Micu, S., 10.1016/j.na.2010.10.034, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1641-1652. (2011) Zbl1428.74162MR2764365DOI10.1016/j.na.2010.10.034
- Matei, A., Micu, S., Niţă, C., 10.1177/1081286517718605, Math. Mech. Solids 23 (2018), 308-328. (2018) Zbl1404.74114MR3776297DOI10.1177/1081286517718605
- Mignot, F., 10.1016/0022-1236(76)90017-3, J. Funct. Anal. 22 (1976), 130-185 French. (1976) Zbl0364.49003MR0423155DOI10.1016/0022-1236(76)90017-3
- Mignot, F., Puel, J.-P., 10.1137/0322028, SIAM J. Control Optim. 22 (1984), 466-476. (1984) Zbl0561.49007MR0739836DOI10.1137/0322028
- Migórski, S., Ochal, A., Sofonea, M., 10.1007/978-1-4614-4232-5, Advances in Mechanics and Mathematics 26. Springer, New York (2013). (2013) Zbl1262.49001MR2976197DOI10.1007/978-1-4614-4232-5
- Naniewicz, Z., Panagiotopoulos, P. D., Mathematical Theory of Hemivariational Inequalities and Applications, Pure and Applied Mathematics, Marcel Dekker 188. Marcel Dekker, New York (1994). (1994) Zbl0968.49008MR1304257
- Neitaanmäki, P., Sprekels, J., Tiba, D., 10.1007/b138797, Springer Monographs in Mathematics. Springer, New York (2006). (2006) Zbl1106.49002MR2183776DOI10.1007/b138797
- Panagiotopoulos, P. D., 10.1007/978-1-4612-5152-1, Birkhäuser, Boston (1985). (1985) Zbl0579.73014MR0896909DOI10.1007/978-1-4612-5152-1
- Panagiotopoulos, P. D., 10.1007/978-3-642-51677-1, Springer, Berlin (1993). (1993) Zbl0826.73002MR1385670DOI10.1007/978-3-642-51677-1
- Peng, Z., 10.1137/19M1249102, SIAM J. Control Optim. 58 (2020), 2236-2255. (2020) Zbl07237871MR4128999DOI10.1137/19M1249102
- Peng, Z., Kunisch, K., 10.1007/s10957-018-1303-8, J. Optim. Theory Appl. 178 (2018), 1-25. (2018) Zbl06931878MR3818360DOI10.1007/s10957-018-1303-8
- Sofonea, M., 10.1007/s00245-017-9450-0, Appl. Math. Optim. 79 (2019), 621-646. (2019) Zbl07068063MR3951711DOI10.1007/s00245-017-9450-0
- Sofonea, M., 10.1007/978-3-030-15242-0_13, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications Birkhäuser, Cham (2019), 445-489. (2019) Zbl07203273MR3970451DOI10.1007/978-3-030-15242-0_13
- Sofonea, M., Bollati, J., Tarzia, D. A., 10.1016/j.jmaa.2020.124567, J. Math. Anal. Appl. 493 (2021), Article ID 124567, 23 pages. (2021) Zbl07267881MR4147630DOI10.1016/j.jmaa.2020.124567
- Sofonea, M., Migórski, S., 10.1201/9781315153261, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2018). (2018) Zbl1384.49002MR3752610DOI10.1201/9781315153261
- Sofonea, M., Tarzia, D. A., 10.1080/01630563.2020.1772288, Numer. Func. Anal. Optim. 41 (2020), 1326-1351. (2020) Zbl07241791MR4128526DOI10.1080/01630563.2020.1772288
- Sofonea, M., Tarzia, D. A., 10.1007/s00009-020-01577-5, Mediterr. J. Math. 17 (2020), Article ID 150, 21 pages. (2020) Zbl07246872MR4137848DOI10.1007/s00009-020-01577-5
- Sofonea, M., Xiao, Y.-B., 10.1007/s10957-019-01549-0, J. Optim. Theory Appl. 183 (2019), 139-157. (2019) Zbl1425.49005MR3989301DOI10.1007/s10957-019-01549-0
- Sofonea, M., Xiao, Y.-B., Tykhonov well-posedness of elliptic variational-hemivariational inequalities, Electron. J. Differ. Equ. 2019 (2019), Article ID 64, 19 pages. (2019) Zbl1415.49009MR3956504
- Tikhonov, A. N., 10.1016/0041-5553(66)90003-6, U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 28-33 translation from Zh. Vychisl. Mat. Mat. Fiz. 6 1966 631-634. (1966) Zbl0212.23803MR0198308DOI10.1016/0041-5553(66)90003-6
- Xiao, Y.-B., Huang, N.-J., Wong, M.-M., 10.11650/twjm/1500406298, Taiwanese J. Math. 15 (2011), 1261-1276. (2011) Zbl1239.49013MR2829910DOI10.11650/twjm/1500406298
- Xiao, Y.-B., Sofonea, M., 10.1007/s00245-019-09563-4, Appl. Math. Optim. 83 (2021), 789-812. (2021) Zbl1461.49013MR4239799DOI10.1007/s00245-019-09563-4
- Zolezzi, T., 10.1007/BF02192292, J. Optim. Theory Appl. 91 (1996), 257-266. (1996) Zbl0873.90094MR1411643DOI10.1007/BF02192292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.