On the right-angled triangle again

Emil Calda

Učitel matematiky (2016)

  • Volume: 024, Issue: 1, page 61-64
  • ISSN: 1210-9037

Abstract

top
In the first part of the article the proof of the following theorem is given: Let point S be the middle of A B in the triangle A B C , point O the intersection of A B and the axis of angle A C B , point P the foot of the perpendicular from C on A B . If angles A C S , S C O , O C P , P C B are equal, then the angle B C A is the right one. In the second part, the area of right angle triangle using only the length of the axis of the right angle and of the median is derived.

How to cite

top

Calda, Emil. "Znovu o pravoúhlém trojúhelníku." Učitel matematiky 024.1 (2016): 61-64. <http://eudml.org/doc/297954>.

@article{Calda2016,
author = {Calda, Emil},
journal = {Učitel matematiky},
language = {cze},
number = {1},
pages = {61-64},
publisher = {Jednota českých matematiků a fyziků},
title = {Znovu o pravoúhlém trojúhelníku},
url = {http://eudml.org/doc/297954},
volume = {024},
year = {2016},
}

TY - JOUR
AU - Calda, Emil
TI - Znovu o pravoúhlém trojúhelníku
JO - Učitel matematiky
PY - 2016
PB - Jednota českých matematiků a fyziků
VL - 024
IS - 1
SP - 61
EP - 64
LA - cze
UR - http://eudml.org/doc/297954
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.