On the minimaxness and coatomicness of local cohomology modules

Marzieh Hatamkhani; Hajar Roshan-Shekalgourabi

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 177-190
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring, I an ideal of R and M an R -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and 𝒞 -minimaxness of local cohomology modules. We show that if M is a minimax R -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if n is a nonnegative integer such that ( H I i ( M ) ) 𝔪 is a minimax R 𝔪 -module for all 𝔪 Max ( R ) and for all i < n , then the set Ass R ( H I n ( M ) ) is finite. Also, if H I i ( M ) is minimax for all i n 1 , then H I i ( M ) is Artinian for i n . It is shown that if M is a 𝒞 -minimax module over a local ring such that H I i ( M ) are 𝒞 -minimax modules for all i < n (or i n ), where n 1 , then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.

How to cite

top

Hatamkhani, Marzieh, and Roshan-Shekalgourabi, Hajar. "On the minimaxness and coatomicness of local cohomology modules." Czechoslovak Mathematical Journal 72.1 (2022): 177-190. <http://eudml.org/doc/297955>.

@article{Hatamkhani2022,
abstract = {Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal \{C\}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_\{\mathfrak \{m\}\}$ is a minimax $R_\{\mathfrak \{m\}\}$-module for all $\mathfrak \{m\} \in \{\rm Max\} (R)$ and for all $i < n$, then the set $\{\rm Ass\}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \ge n \ge 1$, then $H^i_I(M)$ is Artinian for $i \ge n$. It is shown that if $M$ is a $\mathcal \{C\}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal \{C\}$-minimax modules for all $i < n$ (or $i\ge n$), where $n\ge 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.},
author = {Hatamkhani, Marzieh, Roshan-Shekalgourabi, Hajar},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; minimax module; coatomic module; Artinian module; local-global principle},
language = {eng},
number = {1},
pages = {177-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the minimaxness and coatomicness of local cohomology modules},
url = {http://eudml.org/doc/297955},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Hatamkhani, Marzieh
AU - Roshan-Shekalgourabi, Hajar
TI - On the minimaxness and coatomicness of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 177
EP - 190
AB - Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\mathfrak {m}}$ is a minimax $R_{\mathfrak {m}}$-module for all $\mathfrak {m} \in {\rm Max} (R)$ and for all $i < n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \ge n \ge 1$, then $H^i_I(M)$ is Artinian for $i \ge n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i < n$ (or $i\ge n$), where $n\ge 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
LA - eng
KW - local cohomology module; minimax module; coatomic module; Artinian module; local-global principle
UR - http://eudml.org/doc/297955
ER -

References

top
  1. Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D., 10.5831/HMJ.2016.38.2.295, Honam Math. J. 38 (2016), 295-304. (2016) Zbl1346.13030MR3526773DOI10.5831/HMJ.2016.38.2.295
  2. Aghapournahr, M., Melkersson, L., 10.1007/s00013-010-0127-z, Arch. Math. 94 (2010), 519-528. (2010) Zbl1196.13011MR2653668DOI10.1007/s00013-010-0127-z
  3. Bahmanpour, K., Naghipour, R., 10.1090/S0002-9939-08-09260-5, Proc. Am. Math. Soc. 136 (2008), 2359-2363. (2008) Zbl1141.13014MR2390502DOI10.1090/S0002-9939-08-09260-5
  4. Brodmann, M. P., Lashgari, F. A., 10.1090/S0002-9939-00-05328-4, Proc. Am. Math. Soc. 128 (2000), 2851-2853. (2000) Zbl0955.13007MR1664309DOI10.1090/S0002-9939-00-05328-4
  5. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  6. Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
  7. Dibaei, M. T., Yassemi, S., 10.1081/AGB-200034165, Commun. Algebra 32 (2004), 4375-4386. (2004) Zbl1093.13011MR2102455DOI10.1081/AGB-200034165
  8. Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
  9. Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
  10. Huneke, C., Problems on local cohomology, Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics. Jones and Bartlett, Boston (1992), 93-108. (1992) Zbl0782.13015MR1165320
  11. Lorestani, K. B., Sahandi, P., Yassemi, S., 10.4153/CMB-2007-058-8, Can. Math. Bull. 50 (2007), 598-602. (2007) Zbl1140.13016MR2364209DOI10.4153/CMB-2007-058-8
  12. Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). (1989) Zbl0666.13002MR1011461DOI10.1017/CBO9781139171762
  13. Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
  14. Nam, T. T., 10.1142/S0129167X15501025, Int. J. Math. 26 (2015), Article ID 1550102, 16 pages. (2015) Zbl1349.13037MR3432533DOI10.1142/S0129167X15501025
  15. Nam, T. T., Nguyen, M. T., 10.4134/JKMS.j160712, J. Korean Math. Soc. 54 (2017), 1829-1839. (2017) Zbl1401.13052MR3718427DOI10.4134/JKMS.j160712
  16. Payrovi, S., Parsa, M. Lotfi, 10.1080/00927872.2011.631206, Commun. Algebra 41 (2013), 627-637. (2013) Zbl1263.13016MR3011786DOI10.1080/00927872.2011.631206
  17. Rezaei, S., 10.1007/s13226-018-0275-6, Indian J. Pure Appl. Math. 49 (2018), 383-396. (2018) MR3854443DOI10.1007/s13226-018-0275-6
  18. Rudlof, P., 10.1016/0022-4049(91)90118-L, J. Pure Appl. Algebra 74 (1991), 281-305. (1991) Zbl0754.13010MR1135033DOI10.1016/0022-4049(91)90118-L
  19. Rudlof, P., 10.4153/CJM-1992-009-7, Can. J. Math. 44 (1992), 154-166. (1992) Zbl0762.13003MR1152672DOI10.4153/CJM-1992-009-7
  20. Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
  21. Yoshizawa, T., 10.1090/S0002-9939-2011-11108-0, Proc. Am. Math. Soc. 140 (2012), 2293-2305. (2012) Zbl1273.13018MR2898693DOI10.1090/S0002-9939-2011-11108-0
  22. Zöschinger, H., 10.1007/BF01214862, Math. Z. 170 (1980), 221-232 German. (1980) Zbl0411.13009MR0564202DOI10.1007/BF01214862
  23. Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
  24. Zöschinger, H., 10.14492/hokmj/1381517790, Hokkaido Math. J. 17 (1988), 101-116 German. (1988) Zbl0653.13011MR0928469DOI10.14492/hokmj/1381517790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.