On the minimaxness and coatomicness of local cohomology modules
Marzieh Hatamkhani; Hajar Roshan-Shekalgourabi
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 177-190
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHatamkhani, Marzieh, and Roshan-Shekalgourabi, Hajar. "On the minimaxness and coatomicness of local cohomology modules." Czechoslovak Mathematical Journal 72.1 (2022): 177-190. <http://eudml.org/doc/297955>.
@article{Hatamkhani2022,
abstract = {Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal \{C\}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_\{\mathfrak \{m\}\}$ is a minimax $R_\{\mathfrak \{m\}\}$-module for all $\mathfrak \{m\} \in \{\rm Max\} (R)$ and for all $i < n$, then the set $\{\rm Ass\}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \ge n \ge 1$, then $H^i_I(M)$ is Artinian for $i \ge n$. It is shown that if $M$ is a $\mathcal \{C\}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal \{C\}$-minimax modules for all $i < n$ (or $i\ge n$), where $n\ge 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.},
author = {Hatamkhani, Marzieh, Roshan-Shekalgourabi, Hajar},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; minimax module; coatomic module; Artinian module; local-global principle},
language = {eng},
number = {1},
pages = {177-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the minimaxness and coatomicness of local cohomology modules},
url = {http://eudml.org/doc/297955},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Hatamkhani, Marzieh
AU - Roshan-Shekalgourabi, Hajar
TI - On the minimaxness and coatomicness of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 177
EP - 190
AB - Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\mathfrak {m}}$ is a minimax $R_{\mathfrak {m}}$-module for all $\mathfrak {m} \in {\rm Max} (R)$ and for all $i < n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \ge n \ge 1$, then $H^i_I(M)$ is Artinian for $i \ge n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i < n$ (or $i\ge n$), where $n\ge 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
LA - eng
KW - local cohomology module; minimax module; coatomic module; Artinian module; local-global principle
UR - http://eudml.org/doc/297955
ER -
References
top- Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D., 10.5831/HMJ.2016.38.2.295, Honam Math. J. 38 (2016), 295-304. (2016) Zbl1346.13030MR3526773DOI10.5831/HMJ.2016.38.2.295
- Aghapournahr, M., Melkersson, L., 10.1007/s00013-010-0127-z, Arch. Math. 94 (2010), 519-528. (2010) Zbl1196.13011MR2653668DOI10.1007/s00013-010-0127-z
- Bahmanpour, K., Naghipour, R., 10.1090/S0002-9939-08-09260-5, Proc. Am. Math. Soc. 136 (2008), 2359-2363. (2008) Zbl1141.13014MR2390502DOI10.1090/S0002-9939-08-09260-5
- Brodmann, M. P., Lashgari, F. A., 10.1090/S0002-9939-00-05328-4, Proc. Am. Math. Soc. 128 (2000), 2851-2853. (2000) Zbl0955.13007MR1664309DOI10.1090/S0002-9939-00-05328-4
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Dibaei, M. T., Yassemi, S., 10.1081/AGB-200034165, Commun. Algebra 32 (2004), 4375-4386. (2004) Zbl1093.13011MR2102455DOI10.1081/AGB-200034165
- Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
- Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
- Huneke, C., Problems on local cohomology, Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics. Jones and Bartlett, Boston (1992), 93-108. (1992) Zbl0782.13015MR1165320
- Lorestani, K. B., Sahandi, P., Yassemi, S., 10.4153/CMB-2007-058-8, Can. Math. Bull. 50 (2007), 598-602. (2007) Zbl1140.13016MR2364209DOI10.4153/CMB-2007-058-8
- Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). (1989) Zbl0666.13002MR1011461DOI10.1017/CBO9781139171762
- Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
- Nam, T. T., 10.1142/S0129167X15501025, Int. J. Math. 26 (2015), Article ID 1550102, 16 pages. (2015) Zbl1349.13037MR3432533DOI10.1142/S0129167X15501025
- Nam, T. T., Nguyen, M. T., 10.4134/JKMS.j160712, J. Korean Math. Soc. 54 (2017), 1829-1839. (2017) Zbl1401.13052MR3718427DOI10.4134/JKMS.j160712
- Payrovi, S., Parsa, M. Lotfi, 10.1080/00927872.2011.631206, Commun. Algebra 41 (2013), 627-637. (2013) Zbl1263.13016MR3011786DOI10.1080/00927872.2011.631206
- Rezaei, S., 10.1007/s13226-018-0275-6, Indian J. Pure Appl. Math. 49 (2018), 383-396. (2018) MR3854443DOI10.1007/s13226-018-0275-6
- Rudlof, P., 10.1016/0022-4049(91)90118-L, J. Pure Appl. Algebra 74 (1991), 281-305. (1991) Zbl0754.13010MR1135033DOI10.1016/0022-4049(91)90118-L
- Rudlof, P., 10.4153/CJM-1992-009-7, Can. J. Math. 44 (1992), 154-166. (1992) Zbl0762.13003MR1152672DOI10.4153/CJM-1992-009-7
- Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
- Yoshizawa, T., 10.1090/S0002-9939-2011-11108-0, Proc. Am. Math. Soc. 140 (2012), 2293-2305. (2012) Zbl1273.13018MR2898693DOI10.1090/S0002-9939-2011-11108-0
- Zöschinger, H., 10.1007/BF01214862, Math. Z. 170 (1980), 221-232 German. (1980) Zbl0411.13009MR0564202DOI10.1007/BF01214862
- Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
- Zöschinger, H., 10.14492/hokmj/1381517790, Hokkaido Math. J. 17 (1988), 101-116 German. (1988) Zbl0653.13011MR0928469DOI10.14492/hokmj/1381517790
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.