A stochastic mirror-descent algorithm for solving A X B = C over an multi-agent system

Yinghui Wang; Songsong Cheng

Kybernetika (2021)

  • Issue: 2, page 256-271
  • ISSN: 0023-5954

Abstract

top
In this paper, we consider a distributed stochastic computation of A X B = C with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of A X B = C , we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given to illustrate the effectiveness of the proposed algorithm.

How to cite

top

Wang, Yinghui, and Cheng, Songsong. "A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system." Kybernetika (2021): 256-271. <http://eudml.org/doc/297959>.

@article{Wang2021,
abstract = {In this paper, we consider a distributed stochastic computation of $AXB=C$ with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of $AXB=C$, we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given to illustrate the effectiveness of the proposed algorithm.},
author = {Wang, Yinghui, Cheng, Songsong},
journal = {Kybernetika},
keywords = {distributed computation of matrix equation; multi-agent system; sublinear convergence; stochastic mirror descent algorithm},
language = {eng},
number = {2},
pages = {256-271},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system},
url = {http://eudml.org/doc/297959},
year = {2021},
}

TY - JOUR
AU - Wang, Yinghui
AU - Cheng, Songsong
TI - A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 256
EP - 271
AB - In this paper, we consider a distributed stochastic computation of $AXB=C$ with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of $AXB=C$, we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given to illustrate the effectiveness of the proposed algorithm.
LA - eng
KW - distributed computation of matrix equation; multi-agent system; sublinear convergence; stochastic mirror descent algorithm
UR - http://eudml.org/doc/297959
ER -

References

top
  1. Bregman, L. M., , USSR Computational Mathematics and Mathematical Physics 7 (1967), 200-217. MR0215617DOI
  2. Chen, G., Zeng, X., Hong, Y., , IET Control Theory Appl. 13 (2019), 2492-2499. DOI
  3. Cheng, S., Liang, S., , Kybernetika 56 (2020), 559-577. MR4131743DOI
  4. Deng, W., Zeng, X., Hong, Y., , IEEE Control Systems Lett. 4 (2019), 414-419. MR4211320DOI
  5. Gholami, M. R., Jansson, M., al., E. G. Ström et, , IEEE Trans. Signal Inform. Process. over Networks 2 (2016), 27-289. MR3571397DOI
  6. Lan, G., Lee, S., Zhou, Y., , Math. Programm. 180 (2020), 237-284. MR4062837DOI
  7. Lei, J., Shanbhag, U. V., al., J. S. Pang et, , Math. Oper. Res. 45 (2020), 157-190. MR4066993DOI
  8. Liu, J., Morse, A. S., Nedic, A., a., et, , Automatica 83 (2017), 37-46. MR3680412DOI
  9. Mou, S., Liu, J., Morse, A. S., , IEEE Trans. Automat. Control 60 (2015), 2863-2878. MR3419577DOI
  10. Ram, S. S., Nedic, A., Veeravalli, V. V., , J. Optim. Theory Appl. 147 (2010), 516-545. MR2733992DOI
  11. Shi, G., Anderson, B. D. O., Helmke, U., , IEEE Trans. Automat. Control 62 (2016), 2659-2674. MR3660554DOI
  12. Wang, Y., Lin, P., Hong, Y., 10.1007/s11432-016-9173-8, Science China Inform. Sci. 61 (2018), 092202. MR3742944DOI10.1007/s11432-016-9173-8
  13. Wang, Y., Lin, P., Qin, H., , Kybernetika 53 (2017), 595-611. MR3730254DOI
  14. Wang, Y., Zhao, W., al., Y. Hong et, , SIAM J. Control Optim. 57 (2019), 2821-2842. MR3995027DOI
  15. Yuan, D., Hong, Y., al., D. W. C. Ho et, , Automatica 90(2018), 196-203. MR3764399DOI
  16. Yuan, D., Hong, Y., al., D. W. C. Ho et, Distributed mirror descent for online composite optimization., IEEE Trans. Automat. Control (2020). MR4210454
  17. Zeng, X., Liang, S., al., Y. Hong et, , IEEE Trans. Automat. Control 64 (2018), 1858-1873. MR3951032DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.