A stochastic mirror-descent algorithm for solving over an multi-agent system
Kybernetika (2021)
- Issue: 2, page 256-271
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, Yinghui, and Cheng, Songsong. "A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system." Kybernetika (2021): 256-271. <http://eudml.org/doc/297959>.
@article{Wang2021,
abstract = {In this paper, we consider a distributed stochastic computation of $AXB=C$ with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of $AXB=C$, we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given to illustrate the effectiveness of the proposed algorithm.},
author = {Wang, Yinghui, Cheng, Songsong},
journal = {Kybernetika},
keywords = {distributed computation of matrix equation; multi-agent system; sublinear convergence; stochastic mirror descent algorithm},
language = {eng},
number = {2},
pages = {256-271},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system},
url = {http://eudml.org/doc/297959},
year = {2021},
}
TY - JOUR
AU - Wang, Yinghui
AU - Cheng, Songsong
TI - A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 256
EP - 271
AB - In this paper, we consider a distributed stochastic computation of $AXB=C$ with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of $AXB=C$, we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given to illustrate the effectiveness of the proposed algorithm.
LA - eng
KW - distributed computation of matrix equation; multi-agent system; sublinear convergence; stochastic mirror descent algorithm
UR - http://eudml.org/doc/297959
ER -
References
top- Bregman, L. M., , USSR Computational Mathematics and Mathematical Physics 7 (1967), 200-217. MR0215617DOI
- Chen, G., Zeng, X., Hong, Y., , IET Control Theory Appl. 13 (2019), 2492-2499. DOI
- Cheng, S., Liang, S., , Kybernetika 56 (2020), 559-577. MR4131743DOI
- Deng, W., Zeng, X., Hong, Y., , IEEE Control Systems Lett. 4 (2019), 414-419. MR4211320DOI
- Gholami, M. R., Jansson, M., al., E. G. Ström et, , IEEE Trans. Signal Inform. Process. over Networks 2 (2016), 27-289. MR3571397DOI
- Lan, G., Lee, S., Zhou, Y., , Math. Programm. 180 (2020), 237-284. MR4062837DOI
- Lei, J., Shanbhag, U. V., al., J. S. Pang et, , Math. Oper. Res. 45 (2020), 157-190. MR4066993DOI
- Liu, J., Morse, A. S., Nedic, A., a., et, , Automatica 83 (2017), 37-46. MR3680412DOI
- Mou, S., Liu, J., Morse, A. S., , IEEE Trans. Automat. Control 60 (2015), 2863-2878. MR3419577DOI
- Ram, S. S., Nedic, A., Veeravalli, V. V., , J. Optim. Theory Appl. 147 (2010), 516-545. MR2733992DOI
- Shi, G., Anderson, B. D. O., Helmke, U., , IEEE Trans. Automat. Control 62 (2016), 2659-2674. MR3660554DOI
- Wang, Y., Lin, P., Hong, Y., 10.1007/s11432-016-9173-8, Science China Inform. Sci. 61 (2018), 092202. MR3742944DOI10.1007/s11432-016-9173-8
- Wang, Y., Lin, P., Qin, H., , Kybernetika 53 (2017), 595-611. MR3730254DOI
- Wang, Y., Zhao, W., al., Y. Hong et, , SIAM J. Control Optim. 57 (2019), 2821-2842. MR3995027DOI
- Yuan, D., Hong, Y., al., D. W. C. Ho et, , Automatica 90(2018), 196-203. MR3764399DOI
- Yuan, D., Hong, Y., al., D. W. C. Ho et, Distributed mirror descent for online composite optimization., IEEE Trans. Automat. Control (2020). MR4210454
- Zeng, X., Liang, S., al., Y. Hong et, , IEEE Trans. Automat. Control 64 (2018), 1858-1873. MR3951032DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.