Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate
Kybernetika (2020)
- Volume: 56, Issue: 3, page 559-577
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCheng, Songsong, and Liang, Shu. "Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate." Kybernetika 56.3 (2020): 559-577. <http://eudml.org/doc/297233>.
@article{Cheng2020,
abstract = {Distributed optimization over unbalanced graphs is an important problem in multi-agent systems. Most of literatures, by introducing some auxiliary variables, utilize the Push-Sum scheme to handle the widespread unbalance graph with row or column stochastic matrix only. But the introduced auxiliary dynamics bring more calculation and communication tasks. In this paper, based on the in-degree and out-degree information of each agent, we propose an innovative distributed optimization algorithm to reduce the calculation and communication complexity of the conventional Push-Sum scheme. Furthermore, with the aid of small gain theory, we prove the linear convergence rate of the proposed algorithm.},
author = {Cheng, Songsong, Liang, Shu},
journal = {Kybernetika},
keywords = {multi-agent systems; distributed optimization; unbalanced graph; small gain theory; linear convergence rate},
language = {eng},
number = {3},
pages = {559-577},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate},
url = {http://eudml.org/doc/297233},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Cheng, Songsong
AU - Liang, Shu
TI - Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 559
EP - 577
AB - Distributed optimization over unbalanced graphs is an important problem in multi-agent systems. Most of literatures, by introducing some auxiliary variables, utilize the Push-Sum scheme to handle the widespread unbalance graph with row or column stochastic matrix only. But the introduced auxiliary dynamics bring more calculation and communication tasks. In this paper, based on the in-degree and out-degree information of each agent, we propose an innovative distributed optimization algorithm to reduce the calculation and communication complexity of the conventional Push-Sum scheme. Furthermore, with the aid of small gain theory, we prove the linear convergence rate of the proposed algorithm.
LA - eng
KW - multi-agent systems; distributed optimization; unbalanced graph; small gain theory; linear convergence rate
UR - http://eudml.org/doc/297233
ER -
References
top- Cai, K., Ishii, H., 10.1016/j.automatica.2012.08.003, Automatica 48 (2012), 2750-2761. Zbl1252.93004MR2981359DOI10.1016/j.automatica.2012.08.003
- Chang, T., Nedić, A., Scaglione, A., 10.1109/TAC.2014.2308612, IEEE Trans. Automat. Control 59 (2014), 1524-1538. MR3225227DOI10.1109/TAC.2014.2308612
- Chen, C., Chan, R., Ma, S., Yang, J., 10.1137/15100463X, SIAM J. Imaging Sci. 8 (2015), 2239-2267. MR3404682DOI10.1137/15100463X
- Dominguez-Garcia, A., Hadjicostis, C., 10.1109/TAC.2012.2219953, IEEE Trans. Automat. Control 58 (2013), 667-681. MR3029463DOI10.1109/TAC.2012.2219953
- Duchi, J., Agarwal, A., Wainwright, M., 10.1109/TAC.2011.2161027, IEEE Trans. Automat. Control 57 (2012), 592-606. MR2932818DOI10.1109/TAC.2011.2161027
- Gharesifard, B., Cortés, J., 10.3166/EJC.18.539-557, Europ. J. Control 18 (2012), 539-557. MR3086897DOI10.3166/EJC.18.539-557
- Gharesifard, B., Cortés, J., Jorge, 10.1109/TAC.2013.2278132, IEEE Trans. Automat. Control 59 (2014), 781-786. MR3188487DOI10.1109/TAC.2013.2278132
- Loh, H., 10.1287/opre.18.1.87, Oper. Res. 18 (1970), 87-94. MR0265219DOI10.1287/opre.18.1.87
- Halabian, H., 10.1109/JSAC.2019.2894305, IEEE J. Selected Areas Commun. 37 (2019), 627-642. DOI10.1109/JSAC.2019.2894305
- Jian, L., Hu, J., Wang, J. W., Shi, K., 10.1002/oca.2538, Optimal Control, Appl. Methods 40 (2019), 6, 1071-1087. MR4028355DOI10.1002/oca.2538
- Jian, L., Zhao, Y., Hu, J., Li, P., 10.1109/ACCESS.2019.2923269, IEEE Access 7 (2019), 1, 79311-79319. DOI10.1109/ACCESS.2019.2923269
- Kempe, D., Dobra, A., Gehrke, J., 10.1109/SFCS.2003.1238221, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. (2003), 482-491. DOI10.1109/SFCS.2003.1238221
- Liang, S., Zeng, X., Hong, Y., 10.1109/TAC.2017.2752001, IEEE Trans. Automat. Control 63 (2018), 1753-1759. MR3807659DOI10.1109/TAC.2017.2752001
- Liang, S., Wang, L., Yin, G., 10.1016/j.automatica.2018.11.056, Automatica 101 (2019), 175-181. MR3891993DOI10.1016/j.automatica.2018.11.056
- Liang, S., Wang, L., Yin, G., Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity
- Lin, P., Peng, Wang, Y., Qi, H., Hong, Y., Distributed consensus-based K-means algorithm in switching multi-agent networks
- Liu, S., Qiu, Z., Xie, L., 10.1016/j.automatica.2017.06.011, Automatica 83 (2017), 162-169. MR3680426DOI10.1016/j.automatica.2017.06.011
- Nedić, A., Ozdaglar, A., 10.1109/TAC.2008.2009515, IEEE Trans. Automat. Control. 54 (2009), 48-61. MR2478070DOI10.1109/TAC.2008.2009515
- Nedić, A., Ozdaglar, A., Parrilo, P. A., 10.1109/TAC.2010.2041686, IEEE Trans. Automat. Control. 55 (2010), 922-938. MR2654432DOI10.1109/TAC.2010.2041686
- Nedić, A., Olshevsky, A., 10.1109/TAC.2016.2529285, IEEE Trans. Automat. Control 61 (2016), 3936-3947. MR3582505DOI10.1109/TAC.2016.2529285
- Nedić, A., Olshevsky, A., Shi, W., 10.1137/16M1084316, SIAM J. Optim. 27 (2017), 2597-2633. MR3738851DOI10.1137/16M1084316
- Shi, G., Anderson, B. D., Helmke, U., 10.1109/TAC.2016.2612819, IEEE Trans. Automat. Control. 62 (2017), 2659-2674. MR3660554DOI10.1109/TAC.2016.2612819
- Shi, W., Ling, Q., Wu, G., Yin, W., 10.1137/14096668X, SIAM J. Optim. 25 (2015), 944-966. MR3343366DOI10.1137/14096668X
- Tsianos, K. I., Lawlor, S., Rabbat, M. G., 10.1109/CDC.2012.6426375, In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 2012, pp. 5453-5458. DOI10.1109/CDC.2012.6426375
- Tsianos, K. I., Rabbat, M. G., 10.1109/ACC.2012.6315289, In: 2012 American Control Conference (ACC) 2012, pp. 1067-1072. DOI10.1109/ACC.2012.6315289
- Xi, C., Khan, U. A., On the linear convergence of distributed optimization over directed graphs., arXiv preprint arXiv:1510.02149 (2015).
- Xi, C., Khan, U. A., 10.1109/TAC.2016.2615066, IEEE Trans. Automat. Control 62 (2017), 3986-3992. MR3684332DOI10.1109/TAC.2016.2615066
- Xin, R., Xi, C., Khan, U. A., Distributed Subgradient Projection Algorithm over Directed Graphs: Alternate Proof., arXiv preprint arXiv:1706.07707 (2017). MR3684332
- Xin, R., Xi, C., Khan, U. A., 10.1186/s13634-018-0596-y, EURASIP J. Advances Signal Process. 1 (2019), 1-14. DOI10.1186/s13634-018-0596-y
- Yang, T., George, J., Qin, J., Yi, X., Wu, J., Distributed finite-time least squares solver for network linear equations., arXiv preprint arXiv:1810.00156(2018). MR4047486
- Yi, P., Hong, Y., F., Liu, 10.1016/j.automatica.2016.08.007, Automatica 74 (2016), 259-269. MR3569392DOI10.1016/j.automatica.2016.08.007
- Yuan, D., Proutiere, A., Shi, G., Distributed Online Linear Regression., arXiv preprint arXiv:1902.04774.
- Zeng, X., Yi, P., Hong, Y., 10.1109/TAC.2016.2628807, IEEE Trans. Automat. Control 62 (2017), 5227-5233. MR3708893DOI10.1109/TAC.2016.2628807
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.