Matchings in complete bipartite graphs and the -Lah numbers
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 947-959
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNyul, Gábor, and Rácz, Gabriella. "Matchings in complete bipartite graphs and the $r$-Lah numbers." Czechoslovak Mathematical Journal 71.4 (2021): 947-959. <http://eudml.org/doc/297979>.
@article{Nyul2021,
abstract = {We give a graph theoretic interpretation of $r$-Lah numbers, namely, we show that the $r$-Lah number $\{n \atopwithdelims \lfloor \rfloor k\}_\{r\}$ counting the number of $r$-partitions of an $(n+r)$-element set into $k+r$ ordered blocks is just equal to the number of matchings consisting of $n-k$ edges in the complete bipartite graph with partite sets of cardinality $n$ and $n+2r-1$ ($0\le k\le n$, $r\ge 1$). We present five independent proofs including a direct, bijective one. Finally, we close our work with a similar result for $r$-Stirling numbers of the second kind.},
author = {Nyul, Gábor, Rácz, Gabriella},
journal = {Czechoslovak Mathematical Journal},
keywords = {$r$-Lah number; number of matchings; complete bipartite graph; $r$-Stirling number of the second kind},
language = {eng},
number = {4},
pages = {947-959},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Matchings in complete bipartite graphs and the $r$-Lah numbers},
url = {http://eudml.org/doc/297979},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Nyul, Gábor
AU - Rácz, Gabriella
TI - Matchings in complete bipartite graphs and the $r$-Lah numbers
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 947
EP - 959
AB - We give a graph theoretic interpretation of $r$-Lah numbers, namely, we show that the $r$-Lah number ${n \atopwithdelims \lfloor \rfloor k}_{r}$ counting the number of $r$-partitions of an $(n+r)$-element set into $k+r$ ordered blocks is just equal to the number of matchings consisting of $n-k$ edges in the complete bipartite graph with partite sets of cardinality $n$ and $n+2r-1$ ($0\le k\le n$, $r\ge 1$). We present five independent proofs including a direct, bijective one. Finally, we close our work with a similar result for $r$-Stirling numbers of the second kind.
LA - eng
KW - $r$-Lah number; number of matchings; complete bipartite graph; $r$-Stirling number of the second kind
UR - http://eudml.org/doc/297979
ER -
References
top- Belbachir, H., Belkhir, A., Cross recurrence relations for -Lah numbers, Ars Comb. 110 (2013), 199-203. (2013) Zbl1313.11034MR3100323
- Belbachir, H., Bousbaa, I. E., Combinatorial identities for the -Lah numbers, Ars Comb. 115 (2014), 453-458. (2014) Zbl1340.05010MR3236192
- Broder, A. Z., 10.1016/0012-365X(84)90161-4, Discrete Math. 49 (1984), 241-259. (1984) Zbl0535.05006MR0743795DOI10.1016/0012-365X(84)90161-4
- Carlitz, L., Weighted Stirling numbers of the first and second kind. I, Fibonacci Q. 18 (1980), 147-162. (1980) Zbl0428.05003MR0570168
- Cheon, G.-S., Jung, J.-H., 10.1016/j.disc.2012.04.001, Discrete Math. 312 (2012), 2337-2348. (2012) Zbl1246.05009MR2926106DOI10.1016/j.disc.2012.04.001
- El-Desouky, B. S., Shiha, F. A., 10.2298/AADM1801178E, Appl. Anal. Discrete Math. 12 (2018), 178-191. (2018) MR3800372DOI10.2298/AADM1801178E
- Engbers, J., Galvin, D., Hilyard, J., 10.1016/j.ejc.2014.07.002, Eur. J. Comb. 43 (2015), 32-54. (2015) Zbl1301.05027MR3266282DOI10.1016/j.ejc.2014.07.002
- Gyimesi, E., 10.1007/s00009-020-01669-2, Mediterr. J. Math. 18 (2021), Article ID 136, 16 pages. (2021) DOI10.1007/s00009-020-01669-2
- Gyimesi, E., Nyul, G., A note on combinatorial subspaces and -Stirling numbers, Util. Math. 105 (2017), 137-139. (2017) Zbl1430.11034MR3727889
- Gyimesi, E., Nyul, G., 10.1016/j.dam.2018.08.020, Discrete Appl. Math. 255 (2019), 222-233. (2019) Zbl07027138MR3926342DOI10.1016/j.dam.2018.08.020
- Lah, I., A new kind of numbers and its application in the actuarial mathematics, Inst. Actuários Portug., Bol. 9 (1954), 7-15. (1954) Zbl0055.37902
- Lah, I., Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitt.-Bl. Math. Statistik 7 (1955), 203-212 German. (1955) Zbl0066.11801MR0074435
- Lovász, L., 10.1016/c2009-0-09109-0, North-Holland, Amsterdam (1993). (1993) Zbl0785.05001MR1265492DOI10.1016/c2009-0-09109-0
- Lovász, L., Plummer, M. D., 10.1016/s0304-0208(08)x7172-5, Annals of Discrete Mathematics 29. North-Holland Mathematics Studies 121. North-Holland, Amsterdam (1986). (1986) Zbl0618.05001MR0859549DOI10.1016/s0304-0208(08)x7172-5
- Merris, R., The -Stirling numbers, Turk. J. Math. 24 (2000), 379-399. (2000) Zbl0970.05003MR1803821
- Mező, I., Ramírez, J. L., 10.1080/10652469.2014.984180, Integral Transforms Spec. Funct. 26 (2015), 213-225. (2015) Zbl1371.11062MR3293040DOI10.1080/10652469.2014.984180
- Mihoubi, M., Rahmani, M., 10.1007/s13370-017-0510-z, Afr. Mat. 28 (2017), 1167-1183. (2017) Zbl1387.05018MR3714591DOI10.1007/s13370-017-0510-z
- Nyul, G., Rácz, G., 10.1016/j.disc.2014.03.029, Discrete Math. 338 (2015), 1660-1666. (2015) Zbl1315.05018MR3351685DOI10.1016/j.disc.2014.03.029
- Nyul, G., Rácz, G., 10.26493/1855-3974.1793.c4d, Ars Math. Contemp. 18 (2020), 211-222. (2020) Zbl07349763MR4165846DOI10.26493/1855-3974.1793.c4d
- Ramírez, J. L., Shattuck, M., A -analogue of the -Whitney-Lah numbers, J. Integer Seq. 19 (2016), Article ID 16.5.6., 21 pages. (2016) Zbl1342.05015MR3514549
- Schlosser, M. J., Yoo, M., 10.37236/6121, Electron. J. Comb. 24 (2017), Article ID P1.31, 47 pages. (2017) Zbl1355.05047MR3625908DOI10.37236/6121
- Shattuck, M., A generalized recurrence formula for Stirling numbers and related sequences, Notes Number Theory Discrete Math. 21 (2015), 74-80. (2015) Zbl1346.05015
- Shattuck, M., 10.2298/FIL1610683S, Filomat 30 (2016), 2683-2694. (2016) Zbl06749914MR3583394DOI10.2298/FIL1610683S
- Shattuck, M., 10.1007/s12044-016-0309-0, Proc. Indian Acad. Sci., Math. Sci. 126 (2016), 461-478. (2016) Zbl1351.05033MR3568246DOI10.1007/s12044-016-0309-0
- Shattuck, M., 10.33039/ami.2018.11.001, Ann. Math. Inform. 49 (2018), 123-140. (2018) Zbl1424.11062MR3900900DOI10.33039/ami.2018.11.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.