Maximum number of limit cycles for generalized Liénard polynomial differential systems
Aziza Berbache; Ahmed Bendjeddou; Sabah Benadouane
Mathematica Bohemica (2021)
- Volume: 146, Issue: 2, page 151-165
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBerbache, Aziza, Bendjeddou, Ahmed, and Benadouane, Sabah. "Maximum number of limit cycles for generalized Liénard polynomial differential systems." Mathematica Bohemica 146.2 (2021): 151-165. <http://eudml.org/doc/297992>.
@article{Berbache2021,
abstract = {We consider limit cycles of a class of polynomial differential systems of the form \[ \{\left\lbrace \begin\{array\}\{ll\} \dot\{x\}=y, \\ \dot\{y\}=-x-\varepsilon (g\_\{21\}( x) y^\{2\alpha +1\} +f\_\{21\}(x) y^\{2\beta \})-\varepsilon ^\{2\}(g\_\{22\}( x) y^\{2\alpha +1\}+f\_\{22\}( x) y^\{2\beta \}), \end\{array\}\right.\} \]
where $\beta $ and $\alpha $ are positive integers, $g_\{2j\}$ and $f_\{2j\}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot\{x\}=y$, $\dot\{y\}=-x$ using the averaging theory of first and second order.},
author = {Berbache, Aziza, Bendjeddou, Ahmed, Benadouane, Sabah},
journal = {Mathematica Bohemica},
keywords = {polynomial differential system; limit cycle; averaging theory},
language = {eng},
number = {2},
pages = {151-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximum number of limit cycles for generalized Liénard polynomial differential systems},
url = {http://eudml.org/doc/297992},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Berbache, Aziza
AU - Bendjeddou, Ahmed
AU - Benadouane, Sabah
TI - Maximum number of limit cycles for generalized Liénard polynomial differential systems
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 151
EP - 165
AB - We consider limit cycles of a class of polynomial differential systems of the form \[ {\left\lbrace \begin{array}{ll} \dot{x}=y, \\ \dot{y}=-x-\varepsilon (g_{21}( x) y^{2\alpha +1} +f_{21}(x) y^{2\beta })-\varepsilon ^{2}(g_{22}( x) y^{2\alpha +1}+f_{22}( x) y^{2\beta }), \end{array}\right.} \]
where $\beta $ and $\alpha $ are positive integers, $g_{2j}$ and $f_{2j}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=y$, $\dot{y}=-x$ using the averaging theory of first and second order.
LA - eng
KW - polynomial differential system; limit cycle; averaging theory
UR - http://eudml.org/doc/297992
ER -
References
top- Alavez-Ramírez, J., Blé, G., López-López, J., Llibre, J., 10.1142/S0218127412500630, Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250063, 14 pages. (2012) Zbl1270.34050MR2916691DOI10.1142/S0218127412500630
- Blows, T. R., Lloyd, N. G., 10.1017/S0305004100061636, Math. Proc. Camb. Philos. Soc. 95 (1984), 359-366. (1984) Zbl0532.34022MR0735378DOI10.1017/S0305004100061636
- Buică, A., Llibre, J., 10.1016/j.bulsci.2003.09.002, Bull. Sci. Math. 128 (2004), 7-22. (2004) Zbl1055.34086MR2033097DOI10.1016/j.bulsci.2003.09.002
- Chen, X., Llibre, J., Zhang, Z., 10.1016/j.jde.2007.07.004, J. Differ. Equations 242 (2007), 11-23. (2007) Zbl1131.34026MR2361100DOI10.1016/j.jde.2007.07.004
- Christopher, C., Lynch, S., 10.1088/0951-7715/12/4/321, Nonlinearity 12 (1999), 1099-1112. (1999) Zbl1074.34522MR1709857DOI10.1088/0951-7715/12/4/321
- Coppel, W. A., 10.1007/978-3-322-96657-5_3, Dynamics Reported A Series in Dynamical Systems and Their Applications 2. B. G. Teubner, Stuttgart; John Wiley & Sons, Chichester (1989), 61-88 U. Kirchgraber et al. (1989) Zbl0674.34026MR1000976DOI10.1007/978-3-322-96657-5_3
- García, B., Llibre, J., Río, J. S. Peréz del, 10.1016/j.chaos.2014.02.008, Chaos Solitons Fractals 62-63 (2014), 1-9. (2014) Zbl1348.34066MR3200747DOI10.1016/j.chaos.2014.02.008
- Gradshteyn, I. S., Ryzhik, I. M., 10.1016/C2009-0-22516-5, Academic Press, Amsterdam (2007). (2007) Zbl1208.65001MR2360010DOI10.1016/C2009-0-22516-5
- Han, M., Yu, P., 10.1007/978-1-4471-2918-9, Applied Mathematical Sciences 181. Springer, Berlin (2012). (2012) Zbl1252.37002MR2918519DOI10.1007/978-1-4471-2918-9
- Li, J., 10.1142/S0218127403006352, Int. J. Bifurcation Chaos Appl. Sci. Eng. 13 (2003), 47-106. (2003) Zbl1063.34026MR1965270DOI10.1142/S0218127403006352
- Llibre, J., Makhlouf, A., 10.1007/s10883-014-9253-4, J. Dyn. Control Syst. 21 (2015), 189-192. (2015) Zbl1325.34042MR3314541DOI10.1007/s10883-014-9253-4
- Llibre, J., Mereu, A. C., Teixeira, M. A., 10.1017/S0305004109990193, Math. Proc. Camb. Philos. Soc. 148 (2010), 363-383. (2010) Zbl1198.34051MR2600146DOI10.1017/S0305004109990193
- Llibre, J., Valls, C., 10.1098/rspa.2011.0741, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 468 (2012), 2347-2360. (2012) Zbl1371.34044MR2949385DOI10.1098/rspa.2011.0741
- Llibre, J., Valls, C., 10.1016/j.chaos.2012.11.010, Chaos Solitons Fractals 46 (2013), 65-74. (2013) Zbl1258.34060MR3011852DOI10.1016/j.chaos.2012.11.010
- Llibre, J., Valls, C., 10.1142/S021812741350048X, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article ID 1350048, 16 pages. (2013) Zbl1270.34052MR3047963DOI10.1142/S021812741350048X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.