Maximum number of limit cycles for generalized Liénard polynomial differential systems

Aziza Berbache; Ahmed Bendjeddou; Sabah Benadouane

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 2, page 151-165
  • ISSN: 0862-7959

Abstract

top
We consider limit cycles of a class of polynomial differential systems of the form x ˙ = y , y ˙ = - x - ε ( g 21 ( x ) y 2 α + 1 + f 21 ( x ) y 2 β ) - ε 2 ( g 22 ( x ) y 2 α + 1 + f 22 ( x ) y 2 β ) , where β and α are positive integers, g 2 j and f 2 j have degree m and n , respectively, for each j = 1 , 2 , and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center x ˙ = y , y ˙ = - x using the averaging theory of first and second order.

How to cite

top

Berbache, Aziza, Bendjeddou, Ahmed, and Benadouane, Sabah. "Maximum number of limit cycles for generalized Liénard polynomial differential systems." Mathematica Bohemica 146.2 (2021): 151-165. <http://eudml.org/doc/297992>.

@article{Berbache2021,
abstract = {We consider limit cycles of a class of polynomial differential systems of the form \[ \{\left\lbrace \begin\{array\}\{ll\} \dot\{x\}=y, \\ \dot\{y\}=-x-\varepsilon (g\_\{21\}( x) y^\{2\alpha +1\} +f\_\{21\}(x) y^\{2\beta \})-\varepsilon ^\{2\}(g\_\{22\}( x) y^\{2\alpha +1\}+f\_\{22\}( x) y^\{2\beta \}), \end\{array\}\right.\} \] where $\beta $ and $\alpha $ are positive integers, $g_\{2j\}$ and $f_\{2j\}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot\{x\}=y$, $\dot\{y\}=-x$ using the averaging theory of first and second order.},
author = {Berbache, Aziza, Bendjeddou, Ahmed, Benadouane, Sabah},
journal = {Mathematica Bohemica},
keywords = {polynomial differential system; limit cycle; averaging theory},
language = {eng},
number = {2},
pages = {151-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximum number of limit cycles for generalized Liénard polynomial differential systems},
url = {http://eudml.org/doc/297992},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Berbache, Aziza
AU - Bendjeddou, Ahmed
AU - Benadouane, Sabah
TI - Maximum number of limit cycles for generalized Liénard polynomial differential systems
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 151
EP - 165
AB - We consider limit cycles of a class of polynomial differential systems of the form \[ {\left\lbrace \begin{array}{ll} \dot{x}=y, \\ \dot{y}=-x-\varepsilon (g_{21}( x) y^{2\alpha +1} +f_{21}(x) y^{2\beta })-\varepsilon ^{2}(g_{22}( x) y^{2\alpha +1}+f_{22}( x) y^{2\beta }), \end{array}\right.} \] where $\beta $ and $\alpha $ are positive integers, $g_{2j}$ and $f_{2j}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=y$, $\dot{y}=-x$ using the averaging theory of first and second order.
LA - eng
KW - polynomial differential system; limit cycle; averaging theory
UR - http://eudml.org/doc/297992
ER -

References

top
  1. Alavez-Ramírez, J., Blé, G., López-López, J., Llibre, J., 10.1142/S0218127412500630, Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250063, 14 pages. (2012) Zbl1270.34050MR2916691DOI10.1142/S0218127412500630
  2. Blows, T. R., Lloyd, N. G., 10.1017/S0305004100061636, Math. Proc. Camb. Philos. Soc. 95 (1984), 359-366. (1984) Zbl0532.34022MR0735378DOI10.1017/S0305004100061636
  3. Buică, A., Llibre, J., 10.1016/j.bulsci.2003.09.002, Bull. Sci. Math. 128 (2004), 7-22. (2004) Zbl1055.34086MR2033097DOI10.1016/j.bulsci.2003.09.002
  4. Chen, X., Llibre, J., Zhang, Z., 10.1016/j.jde.2007.07.004, J. Differ. Equations 242 (2007), 11-23. (2007) Zbl1131.34026MR2361100DOI10.1016/j.jde.2007.07.004
  5. Christopher, C., Lynch, S., 10.1088/0951-7715/12/4/321, Nonlinearity 12 (1999), 1099-1112. (1999) Zbl1074.34522MR1709857DOI10.1088/0951-7715/12/4/321
  6. Coppel, W. A., 10.1007/978-3-322-96657-5_3, Dynamics Reported A Series in Dynamical Systems and Their Applications 2. B. G. Teubner, Stuttgart; John Wiley & Sons, Chichester (1989), 61-88 U. Kirchgraber et al. (1989) Zbl0674.34026MR1000976DOI10.1007/978-3-322-96657-5_3
  7. García, B., Llibre, J., Río, J. S. Peréz del, 10.1016/j.chaos.2014.02.008, Chaos Solitons Fractals 62-63 (2014), 1-9. (2014) Zbl1348.34066MR3200747DOI10.1016/j.chaos.2014.02.008
  8. Gradshteyn, I. S., Ryzhik, I. M., 10.1016/C2009-0-22516-5, Academic Press, Amsterdam (2007). (2007) Zbl1208.65001MR2360010DOI10.1016/C2009-0-22516-5
  9. Han, M., Yu, P., 10.1007/978-1-4471-2918-9, Applied Mathematical Sciences 181. Springer, Berlin (2012). (2012) Zbl1252.37002MR2918519DOI10.1007/978-1-4471-2918-9
  10. Li, J., 10.1142/S0218127403006352, Int. J. Bifurcation Chaos Appl. Sci. Eng. 13 (2003), 47-106. (2003) Zbl1063.34026MR1965270DOI10.1142/S0218127403006352
  11. Llibre, J., Makhlouf, A., 10.1007/s10883-014-9253-4, J. Dyn. Control Syst. 21 (2015), 189-192. (2015) Zbl1325.34042MR3314541DOI10.1007/s10883-014-9253-4
  12. Llibre, J., Mereu, A. C., Teixeira, M. A., 10.1017/S0305004109990193, Math. Proc. Camb. Philos. Soc. 148 (2010), 363-383. (2010) Zbl1198.34051MR2600146DOI10.1017/S0305004109990193
  13. Llibre, J., Valls, C., 10.1098/rspa.2011.0741, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 468 (2012), 2347-2360. (2012) Zbl1371.34044MR2949385DOI10.1098/rspa.2011.0741
  14. Llibre, J., Valls, C., 10.1016/j.chaos.2012.11.010, Chaos Solitons Fractals 46 (2013), 65-74. (2013) Zbl1258.34060MR3011852DOI10.1016/j.chaos.2012.11.010
  15. Llibre, J., Valls, C., 10.1142/S021812741350048X, Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article ID 1350048, 16 pages. (2013) Zbl1270.34052MR3047963DOI10.1142/S021812741350048X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.