Lagrangian evolution approach to surface-patch quadrangulation
Martin Húska; Matej Medl'a; Karol Mikula; Serena Morigi
Applications of Mathematics (2021)
- Volume: 66, Issue: 4, page 509-551
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHúska, Martin, et al. "Lagrangian evolution approach to surface-patch quadrangulation." Applications of Mathematics 66.4 (2021): 509-551. <http://eudml.org/doc/297993>.
@article{Húska2021,
abstract = {We present a method for the generation of a pure quad mesh approximating a discrete manifold of arbitrary topology that preserves the patch layout characterizing the intrinsic object structure. A three-step procedure constitutes the core of our approach which first extracts the patch layout of the object by a topological partitioning of the digital shape, then computes the minimal surface given by the boundaries of the patch layout (basic quad layout) and then evolves it towards the object boundaries. The Lagrangian evolution of the initial surface (basic quad layout) in the direction of the gradient of the signed distance function is smoothed by a mean curvature term. The direct control over the global quality of the generated quad mesh is provided by two types of tangential redistributions: area-based, to equally distribute the size of the quads, and angle-based, to preserve quad corner angles. Experimental results showed that the proposed method generates pure quad meshes of arbitrary topology objects, composed of well-shaped evenly distributed elements with few extraordinary vertices.},
author = {Húska, Martin, Medl'a, Matej, Mikula, Karol, Morigi, Serena},
journal = {Applications of Mathematics},
keywords = {Lagrangian evolution; patch layout; non-conforming mesh; mesh partitioning},
language = {eng},
number = {4},
pages = {509-551},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lagrangian evolution approach to surface-patch quadrangulation},
url = {http://eudml.org/doc/297993},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Húska, Martin
AU - Medl'a, Matej
AU - Mikula, Karol
AU - Morigi, Serena
TI - Lagrangian evolution approach to surface-patch quadrangulation
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 509
EP - 551
AB - We present a method for the generation of a pure quad mesh approximating a discrete manifold of arbitrary topology that preserves the patch layout characterizing the intrinsic object structure. A three-step procedure constitutes the core of our approach which first extracts the patch layout of the object by a topological partitioning of the digital shape, then computes the minimal surface given by the boundaries of the patch layout (basic quad layout) and then evolves it towards the object boundaries. The Lagrangian evolution of the initial surface (basic quad layout) in the direction of the gradient of the signed distance function is smoothed by a mean curvature term. The direct control over the global quality of the generated quad mesh is provided by two types of tangential redistributions: area-based, to equally distribute the size of the quads, and angle-based, to preserve quad corner angles. Experimental results showed that the proposed method generates pure quad meshes of arbitrary topology objects, composed of well-shaped evenly distributed elements with few extraordinary vertices.
LA - eng
KW - Lagrangian evolution; patch layout; non-conforming mesh; mesh partitioning
UR - http://eudml.org/doc/297993
ER -
References
top- Barrett, J. W., Garcke, H., Nürnberg, R., 10.1016/j.jcp.2007.11.023, J. Comput. Phys. 227 (2008), 4281-4307. (2008) Zbl1145.65068MR2406538DOI10.1016/j.jcp.2007.11.023
- Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D., 10.1111/cgf.12014, Comput. Graph. Forum 32 (2013), 51-76. (2013) DOI10.1111/cgf.12014
- Bommes, D., Zimmer, H., Kobbelt, L., 10.1145/1531326.1531383, ACM Trans. Graph. 28 (2009), Article ID 77, 10 pages. (2009) DOI10.1145/1531326.1531383
- Campen, M., 10.2312/egt.20171033, Comput. Graph. Forum 36 (2017), 567-588. (2017) DOI10.2312/egt.20171033
- Cignoni, P., Rocchini, C., Scopigno, R., 10.1111/1467-8659.00236, Comput. Graph. Forum 17 (1998), 167-174. (1998) DOI10.1111/1467-8659.00236
- Daniel, P., Medl'a, M., Mikula, K., Remešíková, M., 10.1007/978-3-319-18461-6_47, Scale Space and Variational Methods in Computer Vision Lecture Notes in Computer Science 9087. Springer, Cham (2015), 589-600. (2015) MR3394961DOI10.1007/978-3-319-18461-6_47
- Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J. C., 10.1145/1179352.1141993, ACM Trans. Graph. 25 (2006), 1057-1066. (2006) DOI10.1145/1179352.1141993
- Dziuk, G., 10.1007/BF01385643, Numer. Math. 58 (1991), 603-611. (1991) Zbl0714.65092MR1083523DOI10.1007/BF01385643
- Dziuk, G., Elliott, C. M., 10.1017/S0962492913000056, Acta Numerica 22 (2013), 289-396. (2013) Zbl1296.65156MR3038698DOI10.1017/S0962492913000056
- Elliott, C. M., Fritz, H., 10.1093/imanum/drw020, IMA J. Numer. Anal. 37 (2017), 543-603. (2017) Zbl1433.65219MR3649420DOI10.1093/imanum/drw020
- Faure, E., Savy, T., Rizzi, B., al., et, 10.1038/ncomms9674, Nature Communications 7 (2016), Article ID 8674, 10 pages. (2016) DOI10.1038/ncomms9674
- Fecko, M., 10.1017/CBO9780511755590, Cambridge University Press, Cambridge (2006). (2006) Zbl1121.53001MR2260667DOI10.1017/CBO9780511755590
- Gray, A., 10.1201/9781315276038, CRC Press, Boca Raton (1998). (1998) Zbl0942.53001MR1688379DOI10.1201/9781315276038
- Hou, T. Y., Klapper, I., Si, H., 10.1006/jcph.1998.5977, J. Comput. Phys. 143 (1998), 628-664. (1998) Zbl0917.76063MR1631208DOI10.1006/jcph.1998.5977
- Hou, T. Y., Lowengrub, J. S., Shelley, M. J., 10.1006/jcph.1994.1170, J. Comput. Phys. 114 (1994), 312-338. (1994) Zbl0810.76095MR1294935DOI10.1006/jcph.1994.1170
- Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., Bao, H., 10.1145/1409060.1409100, ACM Trans. Graph. 27 (2008), Article ID 147, 9 pages. (2008) DOI10.1145/1409060.1409100
- Huska, M., Lazzaro, D., Morigi, S., 10.1007/s10851-018-0799-8, J. Math. Imaging Vis. 60 (2018), 1111-1131. (2018) Zbl1435.65035MR3832136DOI10.1007/s10851-018-0799-8
- Kimura, M., 10.1007/BF03167390, Japan J. Ind. Appl. Math. 14 (1997), 373-398. (1997) Zbl0892.76065MR1475140DOI10.1007/BF03167390
- Kósa, B., Haličková-Brehovská, J., Mikula, K., New efficient numerical method for 3D point cloud surface reconstruction by using level set methods, Proceedings of Equadiff 14 Slovak University of Technology, SPEKTRUM STU Publishing, Bratislava (2017), 387-396. (2017)
- Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., Gu, X., 10.1109/TVCG.2009.59, IEEE Trans. Visualization Comput. Graph. 16 (2010), 95-108. (2010) DOI10.1109/TVCG.2009.59
- Lévy, B., Liu, Y., 10.1145/1833349.1778856, ACM Trans. Graph. 29 (2010), Article ID 119, 11 pages. (2010) DOI10.1145/1833349.1778856
- Liu, D., Xu, G., Zhang, Q., 10.1016/j.camwa.2007.04.047, Comput. Math. Appl. 55 (2008), 1081-1093. (2008) Zbl1152.65115MR2394345DOI10.1016/j.camwa.2007.04.047
- Medl'a, M., Mikula, K., Gaussian curvature based tangential redistribution of points on evolving surfaces, Proceedings of Equadiff 14 Slovak University of Technology, SPEKTRUM STU Publishing, Bratislava (2017), 255-264. (2017)
- Meyer, M., Desbrun, M., Schröder, P., Barr, A. H., 10.1007/978-3-662-05105-4_2, Visualization and Mathematics III Springer, Berlin (2003), 35-57. (2003) Zbl1069.53004MR2047000DOI10.1007/978-3-662-05105-4_2
- Mikula, K., Remešíková, M., Sarkoci, P., Ševčovič, D., 10.1137/130927668, SIAM J. Sci. Comput. 36 (2014), A1384--A1414. (2014) Zbl1328.53086MR3226752DOI10.1137/130927668
- Mikula, K., Ševčovič, D., 10.1137/S0036139999359288, SIAM J. Appl. Math. 61 (2001), 1473-1501. (2001) Zbl0980.35078MR1824511DOI10.1137/S0036139999359288
- Mikula, K., Ševčovič, D., 10.1002/mma.514, Math. Methods Appl. Sci. 27 (2004), 1545-1565. (2004) Zbl1049.35019MR2077443DOI10.1002/mma.514
- Morigi, S., 10.1016/j.cam.2007.04.052, J. Comput. Appl. Math. 233 (2010), 1277-1287. (2010) Zbl1179.65021MR2559363DOI10.1016/j.cam.2007.04.052
- Myles, A., Pietroni, N., Kovacs, D., Zorin, D., 10.1145/1778765.1778854, ACM Trans. Graph. 29 (2010), Article ID 117, 11 pages. (2010) DOI10.1145/1778765.1778854
- Neumann, T., Varanasi, K., Theobalt, C., Magnor, M., Wacker, M., 10.1111/cgf.12429, Comput. Graph. Forum 33 (2014), 35-44. (2014) DOI10.1111/cgf.12429
- Osher, S., Fedkiw, R., 10.1007/b98879, Applied Mathematical Sciences 153. Springer, Berlin (2003). (2003) Zbl1026.76001MR1939127DOI10.1007/b98879
- Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge University Press, Cambridge (1999). (1999) Zbl0973.76003MR1700751
- Ševčovič, D., Yazaki, S., 10.1002/mma.2554, Math. Methods Appl. Sci. 35 (2012), 1784-1798. (2012) Zbl1255.35148MR2982466DOI10.1002/mma.2554
- Sleijpen, G. L. G., Fokkema, D. R., BiCGstab for linear equations involving unsymmetric matrices with complex spectrum, ETNA, Electron. Trans. Numer. Anal. 1 (1993), 11-32. (1993) Zbl0820.65016MR1234354
- Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., Puppo, E., 10.1111/j.1467-8659.2009.01610.x, Comput. Graph. Forum 29 (2010), 407-418. (2010) DOI10.1111/j.1467-8659.2009.01610.x
- Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M., 10.2312/SGP/SGP06/201-210, Symposium on Geometry Processing, SGP '06 Eurographics Association (2006), 201-210. (2006) DOI10.2312/SGP/SGP06/201-210
- Usai, F., Livesu, M., Puppo, E., Tarini, M., Scateni, R., 10.1145/2809785, ACM Trans. Graph. 35 (2015), Article ID 6, 13 pages. (2015) DOI10.1145/2809785
- Wenzel, J., Tarini, M., Panozzo, D., Sorkine-Hornung, O., 10.1145/2816795.2818078, ACM Trans. Graph. 34 (2015), Article ID 189, 15 pages. (2015) DOI10.1145/2816795.2818078
- Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W., 10.1111/j.1467-8659.2009.01521.x, Comput. Graph. Forum 28 (2009), 1445-1454. (2009) DOI10.1111/j.1467-8659.2009.01521.x
- Zhao, H.-K., 10.1090/S0025-5718-04-01678-3, Math. Comput. 74 (2005), 603-627. (2005) Zbl1070.65113MR2114640DOI10.1090/S0025-5718-04-01678-3
- Zhao, H.-K., Osher, S., Fedkiw, R., 10.1109/VLSM.2001.938900, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision IEEE, Los Alamitos (2001), 194-201. (2001) MR1836523DOI10.1109/VLSM.2001.938900
- Zhao, H.-K., Osher, S., Merriman, B., Kang, M., 10.1006/cviu.2000.0875, Comput. Vis. Image Underst. 80 (2000), 295-314. (2000) Zbl1011.68538DOI10.1006/cviu.2000.0875
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.