Generalized connectivity of some total graphs
Yinkui Li; Yaping Mao; Zhao Wang; Zongtian Wei
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 623-640
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Yinkui, et al. "Generalized connectivity of some total graphs." Czechoslovak Mathematical Journal 71.3 (2021): 623-640. <http://eudml.org/doc/298010>.
@article{Li2021,
abstract = {We study the generalized $k$-connectivity $\kappa _k(G)$ as introduced by Hager in 1985, as well as the more recently introduced generalized $k$-edge-connectivity $\lambda _k(G)$. We determine the exact value of $\kappa _k(G)$ and $\lambda _k(G)$ for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case $k=3$.},
author = {Li, Yinkui, Mao, Yaping, Wang, Zhao, Wei, Zongtian},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized (edge-)connectivity; line graph; total graph; complete graph},
language = {eng},
number = {3},
pages = {623-640},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized connectivity of some total graphs},
url = {http://eudml.org/doc/298010},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Li, Yinkui
AU - Mao, Yaping
AU - Wang, Zhao
AU - Wei, Zongtian
TI - Generalized connectivity of some total graphs
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 623
EP - 640
AB - We study the generalized $k$-connectivity $\kappa _k(G)$ as introduced by Hager in 1985, as well as the more recently introduced generalized $k$-edge-connectivity $\lambda _k(G)$. We determine the exact value of $\kappa _k(G)$ and $\lambda _k(G)$ for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case $k=3$.
LA - eng
KW - generalized (edge-)connectivity; line graph; total graph; complete graph
UR - http://eudml.org/doc/298010
ER -
References
top- Beineke, L. W., (eds.), R. J. Wilson, Topics in Structural Graph Theory, Encyclopedia of Mathematics and its Applications 147. Cambrige University Press, Cambridge (2013). (2013) Zbl1266.05002MR3059595
- Boesch, F. T., Chen, S., 10.1137/0134052, SIAM J. Appl. Math. 34 (1978), 657-665. (1978) Zbl0386.05042MR0505837DOI10.1137/0134052
- Bondy, J. A., Murty, U. S. R., 10.1007/978-1-84628-970-5, Graduate Texts in Mathematics 244. Springer, Berlin (2008). (2008) Zbl1134.05001MR2368647DOI10.1007/978-1-84628-970-5
- Chartrand, G., Kappor, S. F., Lesniak, L., Lick, D. R., Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984), 1-6. (1984) MR2107429
- Chartrand, G., Okamoto, F., Zhang, P., 10.1002/net.20339, Networks 55 (2010), 360-367. (2010) Zbl1205.05085MR2666306DOI10.1002/net.20339
- Chartrand, G., Stewart, M. J., 10.1007/BF01350320, Math. Ann. 182 (1969), 170-174. (1969) Zbl0167.52203MR0277428DOI10.1007/BF01350320
- Gu, R., Li, X., Shi, Y., The generalized 3-connectivity of random graphs, Acta Math. Sin., Chin. Ser. 57 (2014), 321-330 Chinese. (2014) Zbl1313.05205
- Hager, M., 10.1016/0095-8956(85)90083-8, J. Comb. Theory, Ser. B 38 (1985), 179-189. (1985) Zbl0566.05041MR0787327DOI10.1016/0095-8956(85)90083-8
- Hamada, T., Nonaka, T., Yoshimura, I., 10.1007/BF01419429, Math. Ann. 196 (1972), 30-38. (1972) Zbl0215.33802MR0295959DOI10.1007/BF01419429
- Kriesell, M., 10.1016/S0095-8956(02)00013-8, J. Comb. Theory, Ser. B 88 (2003), 53-65. (2003) Zbl1027.05023MR1973259DOI10.1016/S0095-8956(02)00013-8
- Kriesell, M., 10.1002/jgt.20389, J. Graph Theory 62 (2009), 188-198. (2009) Zbl1183.05018MR2555097DOI10.1002/jgt.20389
- Li, S., Li, X., 10.1007/s10878-011-9399-x, J. Comb. Optim. 24 (2012), 389-396. (2012) Zbl1261.90078MR2970506DOI10.1007/s10878-011-9399-x
- Li, S., Li, X., Shi, Y., The minimal size of a graph with generalized connectivity , Australas. J. Comb. 51 (2011), 209-220. (2011) Zbl1233.05120MR2866960
- Li, S., Li, X., Zhou, W., 10.1016/j.disc.2010.04.011, Discrete Math. 310 (2010), 2147-2163. (2010) Zbl1258.05057MR2651812DOI10.1016/j.disc.2010.04.011
- Li, S., Li, W., Shi, Y., Sun, H., 10.1007/s10878-016-0075-z, J. Comb. Optim. 34 (2017), 141-164. (2017) Zbl1410.05107MR3661071DOI10.1007/s10878-016-0075-z
- Li, S., Shi, Y., Tu, J., 10.1007/s00373-017-1837-9, Graphs Comb. 33 (2017), 1195-1209. (2017) Zbl1383.05158MR3714525DOI10.1007/s00373-017-1837-9
- Li, X., Mao, Y., 10.1007/978-3-319-33828-6, SpringerBriefs in Mathematics. Springer, Cham (2016). (2016) Zbl1346.05001MR3496995DOI10.1007/978-3-319-33828-6
- Li, X., Mao, Y., Sun, Y., On the generalized (edge-)connectivity of graphs, Australas. J. Comb. 58 (2014), 304-319. (2014) Zbl1296.05107MR3211785
- Nash-Williams, C. S. J. A., 10.1112/jlms/s1-36.1.445, J. Lond. Math. Soc. 36 (1961), 445-450. (1961) Zbl0102.38805MR0133253DOI10.1112/jlms/s1-36.1.445
- Okamoto, F., Zhang, P., The tree connectivity of regular complete bipartite graphs, J. Comb. Math. Comb. Comput. 74 (2010), 279-293. (2010) Zbl1223.05159MR2675906
- Tutte, W. T., 10.1112/jlms/s1-36.1.221, J. Lond. Math. Soc. 36 (1961), 221-230. (1961) Zbl0096.38001MR0140438DOI10.1112/jlms/s1-36.1.221
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.