Generalized connectivity of some total graphs

Yinkui Li; Yaping Mao; Zhao Wang; Zongtian Wei

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 3, page 623-640
  • ISSN: 0011-4642

Abstract

top
We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ) . We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3 .

How to cite

top

Li, Yinkui, et al. "Generalized connectivity of some total graphs." Czechoslovak Mathematical Journal 71.3 (2021): 623-640. <http://eudml.org/doc/298010>.

@article{Li2021,
abstract = {We study the generalized $k$-connectivity $\kappa _k(G)$ as introduced by Hager in 1985, as well as the more recently introduced generalized $k$-edge-connectivity $\lambda _k(G)$. We determine the exact value of $\kappa _k(G)$ and $\lambda _k(G)$ for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case $k=3$.},
author = {Li, Yinkui, Mao, Yaping, Wang, Zhao, Wei, Zongtian},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized (edge-)connectivity; line graph; total graph; complete graph},
language = {eng},
number = {3},
pages = {623-640},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized connectivity of some total graphs},
url = {http://eudml.org/doc/298010},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Li, Yinkui
AU - Mao, Yaping
AU - Wang, Zhao
AU - Wei, Zongtian
TI - Generalized connectivity of some total graphs
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 623
EP - 640
AB - We study the generalized $k$-connectivity $\kappa _k(G)$ as introduced by Hager in 1985, as well as the more recently introduced generalized $k$-edge-connectivity $\lambda _k(G)$. We determine the exact value of $\kappa _k(G)$ and $\lambda _k(G)$ for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case $k=3$.
LA - eng
KW - generalized (edge-)connectivity; line graph; total graph; complete graph
UR - http://eudml.org/doc/298010
ER -

References

top
  1. Beineke, L. W., (eds.), R. J. Wilson, Topics in Structural Graph Theory, Encyclopedia of Mathematics and its Applications 147. Cambrige University Press, Cambridge (2013). (2013) Zbl1266.05002MR3059595
  2. Boesch, F. T., Chen, S., 10.1137/0134052, SIAM J. Appl. Math. 34 (1978), 657-665. (1978) Zbl0386.05042MR0505837DOI10.1137/0134052
  3. Bondy, J. A., Murty, U. S. R., 10.1007/978-1-84628-970-5, Graduate Texts in Mathematics 244. Springer, Berlin (2008). (2008) Zbl1134.05001MR2368647DOI10.1007/978-1-84628-970-5
  4. Chartrand, G., Kappor, S. F., Lesniak, L., Lick, D. R., Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984), 1-6. (1984) MR2107429
  5. Chartrand, G., Okamoto, F., Zhang, P., 10.1002/net.20339, Networks 55 (2010), 360-367. (2010) Zbl1205.05085MR2666306DOI10.1002/net.20339
  6. Chartrand, G., Stewart, M. J., 10.1007/BF01350320, Math. Ann. 182 (1969), 170-174. (1969) Zbl0167.52203MR0277428DOI10.1007/BF01350320
  7. Gu, R., Li, X., Shi, Y., The generalized 3-connectivity of random graphs, Acta Math. Sin., Chin. Ser. 57 (2014), 321-330 Chinese. (2014) Zbl1313.05205
  8. Hager, M., 10.1016/0095-8956(85)90083-8, J. Comb. Theory, Ser. B 38 (1985), 179-189. (1985) Zbl0566.05041MR0787327DOI10.1016/0095-8956(85)90083-8
  9. Hamada, T., Nonaka, T., Yoshimura, I., 10.1007/BF01419429, Math. Ann. 196 (1972), 30-38. (1972) Zbl0215.33802MR0295959DOI10.1007/BF01419429
  10. Kriesell, M., 10.1016/S0095-8956(02)00013-8, J. Comb. Theory, Ser. B 88 (2003), 53-65. (2003) Zbl1027.05023MR1973259DOI10.1016/S0095-8956(02)00013-8
  11. Kriesell, M., 10.1002/jgt.20389, J. Graph Theory 62 (2009), 188-198. (2009) Zbl1183.05018MR2555097DOI10.1002/jgt.20389
  12. Li, S., Li, X., 10.1007/s10878-011-9399-x, J. Comb. Optim. 24 (2012), 389-396. (2012) Zbl1261.90078MR2970506DOI10.1007/s10878-011-9399-x
  13. Li, S., Li, X., Shi, Y., The minimal size of a graph with generalized connectivity κ 3 = 2 , Australas. J. Comb. 51 (2011), 209-220. (2011) Zbl1233.05120MR2866960
  14. Li, S., Li, X., Zhou, W., 10.1016/j.disc.2010.04.011, Discrete Math. 310 (2010), 2147-2163. (2010) Zbl1258.05057MR2651812DOI10.1016/j.disc.2010.04.011
  15. Li, S., Li, W., Shi, Y., Sun, H., 10.1007/s10878-016-0075-z, J. Comb. Optim. 34 (2017), 141-164. (2017) Zbl1410.05107MR3661071DOI10.1007/s10878-016-0075-z
  16. Li, S., Shi, Y., Tu, J., 10.1007/s00373-017-1837-9, Graphs Comb. 33 (2017), 1195-1209. (2017) Zbl1383.05158MR3714525DOI10.1007/s00373-017-1837-9
  17. Li, X., Mao, Y., 10.1007/978-3-319-33828-6, SpringerBriefs in Mathematics. Springer, Cham (2016). (2016) Zbl1346.05001MR3496995DOI10.1007/978-3-319-33828-6
  18. Li, X., Mao, Y., Sun, Y., On the generalized (edge-)connectivity of graphs, Australas. J. Comb. 58 (2014), 304-319. (2014) Zbl1296.05107MR3211785
  19. Nash-Williams, C. S. J. A., 10.1112/jlms/s1-36.1.445, J. Lond. Math. Soc. 36 (1961), 445-450. (1961) Zbl0102.38805MR0133253DOI10.1112/jlms/s1-36.1.445
  20. Okamoto, F., Zhang, P., The tree connectivity of regular complete bipartite graphs, J. Comb. Math. Comb. Comput. 74 (2010), 279-293. (2010) Zbl1223.05159MR2675906
  21. Tutte, W. T., 10.1112/jlms/s1-36.1.221, J. Lond. Math. Soc. 36 (1961), 221-230. (1961) Zbl0096.38001MR0140438DOI10.1112/jlms/s1-36.1.221

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.