Packing four copies of a tree into a complete bipartite graph
Liqun Pu; Yuan Tang; Xiaoli Gao
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 39-57
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPu, Liqun, Tang, Yuan, and Gao, Xiaoli. "Packing four copies of a tree into a complete bipartite graph." Czechoslovak Mathematical Journal 72.1 (2022): 39-57. <http://eudml.org/doc/298041>.
@article{Pu2022,
abstract = {In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree $T$ of order $n$ and each integer $k\ge 2$, there is a $k$-packing of $T$ in a complete bipartite graph $B_\{n+k-1\}$ whose order is $n+k-1$. We prove the conjecture is true for $k=4$.},
author = {Pu, Liqun, Tang, Yuan, Gao, Xiaoli},
journal = {Czechoslovak Mathematical Journal},
keywords = {packing; bipartite packing; embedding},
language = {eng},
number = {1},
pages = {39-57},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Packing four copies of a tree into a complete bipartite graph},
url = {http://eudml.org/doc/298041},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Pu, Liqun
AU - Tang, Yuan
AU - Gao, Xiaoli
TI - Packing four copies of a tree into a complete bipartite graph
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 39
EP - 57
AB - In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree $T$ of order $n$ and each integer $k\ge 2$, there is a $k$-packing of $T$ in a complete bipartite graph $B_{n+k-1}$ whose order is $n+k-1$. We prove the conjecture is true for $k=4$.
LA - eng
KW - packing; bipartite packing; embedding
UR - http://eudml.org/doc/298041
ER -
References
top- Fouquet, J.-L., Wojda, A. P., 10.1016/0012-365X(93)90540-A, Discrete Math. 121 (1993), 85-92. (1993) Zbl0791.05080MR1246160DOI10.1016/0012-365X(93)90540-A
- Hobbs, A. M., Bourgeois, B. A., Kasiraj, J., 10.1016/0012-365X(87)90164-6, Discrete Math. 67 (1987), 27-42. (1987) Zbl0642.05043MR0908184DOI10.1016/0012-365X(87)90164-6
- Wang, H., 10.1002/(SICI)1097-0118(199610)23:2<209::AID-JGT12>3.0.CO;2-B, J. Graph Theory 23 (1996), 209-213. (1996) Zbl0858.05089MR1408349DOI10.1002/(SICI)1097-0118(199610)23:2<209::AID-JGT12>3.0.CO;2-B
- Wang, H., 10.1007/s00026-009-0022-0, Ann. Comb. 13 (2009), 261-269. (2009) Zbl1229.05233MR2529729DOI10.1007/s00026-009-0022-0
- Wang, H., Sauer, N., 10.1007/978-3-642-60406-5_11, The Mathematics of Paul Erdős. Vol. II Algorithms and Combinatorics 14. Springer, Berlin (1997), 99-120. (1997) Zbl0876.05029MR1425209DOI10.1007/978-3-642-60406-5_11
- West, D. B., Introduction to Graph Theory, Prentice-Hall, Upper Saddle River (1996). (1996) Zbl0845.05001MR1367739
- Woźniak, M., 10.1016/S0012-365X(03)00296-6, Discrete Math. 276 (2004), 379-391. (2004) Zbl1031.05041MR2046650DOI10.1016/S0012-365X(03)00296-6
- Yap, H. P., 10.1016/0012-365X(88)90232-4, Discrete Math. 72 (1988), 395-404. (1988) Zbl0685.05036MR0975562DOI10.1016/0012-365X(88)90232-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.