Packing four copies of a tree into a complete bipartite graph

Liqun Pu; Yuan Tang; Xiaoli Gao

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 39-57
  • ISSN: 0011-4642

Abstract

top
In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree T of order n and each integer k 2 , there is a k -packing of T in a complete bipartite graph B n + k - 1 whose order is n + k - 1 . We prove the conjecture is true for k = 4 .

How to cite

top

Pu, Liqun, Tang, Yuan, and Gao, Xiaoli. "Packing four copies of a tree into a complete bipartite graph." Czechoslovak Mathematical Journal 72.1 (2022): 39-57. <http://eudml.org/doc/298041>.

@article{Pu2022,
abstract = {In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree $T$ of order $n$ and each integer $k\ge 2$, there is a $k$-packing of $T$ in a complete bipartite graph $B_\{n+k-1\}$ whose order is $n+k-1$. We prove the conjecture is true for $k=4$.},
author = {Pu, Liqun, Tang, Yuan, Gao, Xiaoli},
journal = {Czechoslovak Mathematical Journal},
keywords = {packing; bipartite packing; embedding},
language = {eng},
number = {1},
pages = {39-57},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Packing four copies of a tree into a complete bipartite graph},
url = {http://eudml.org/doc/298041},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Pu, Liqun
AU - Tang, Yuan
AU - Gao, Xiaoli
TI - Packing four copies of a tree into a complete bipartite graph
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 39
EP - 57
AB - In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree $T$ of order $n$ and each integer $k\ge 2$, there is a $k$-packing of $T$ in a complete bipartite graph $B_{n+k-1}$ whose order is $n+k-1$. We prove the conjecture is true for $k=4$.
LA - eng
KW - packing; bipartite packing; embedding
UR - http://eudml.org/doc/298041
ER -

References

top
  1. Fouquet, J.-L., Wojda, A. P., 10.1016/0012-365X(93)90540-A, Discrete Math. 121 (1993), 85-92. (1993) Zbl0791.05080MR1246160DOI10.1016/0012-365X(93)90540-A
  2. Hobbs, A. M., Bourgeois, B. A., Kasiraj, J., 10.1016/0012-365X(87)90164-6, Discrete Math. 67 (1987), 27-42. (1987) Zbl0642.05043MR0908184DOI10.1016/0012-365X(87)90164-6
  3. Wang, H., 10.1002/(SICI)1097-0118(199610)23:2<209::AID-JGT12>3.0.CO;2-B, J. Graph Theory 23 (1996), 209-213. (1996) Zbl0858.05089MR1408349DOI10.1002/(SICI)1097-0118(199610)23:2<209::AID-JGT12>3.0.CO;2-B
  4. Wang, H., 10.1007/s00026-009-0022-0, Ann. Comb. 13 (2009), 261-269. (2009) Zbl1229.05233MR2529729DOI10.1007/s00026-009-0022-0
  5. Wang, H., Sauer, N., 10.1007/978-3-642-60406-5_11, The Mathematics of Paul Erdős. Vol. II Algorithms and Combinatorics 14. Springer, Berlin (1997), 99-120. (1997) Zbl0876.05029MR1425209DOI10.1007/978-3-642-60406-5_11
  6. West, D. B., Introduction to Graph Theory, Prentice-Hall, Upper Saddle River (1996). (1996) Zbl0845.05001MR1367739
  7. Woźniak, M., 10.1016/S0012-365X(03)00296-6, Discrete Math. 276 (2004), 379-391. (2004) Zbl1031.05041MR2046650DOI10.1016/S0012-365X(03)00296-6
  8. Yap, H. P., 10.1016/0012-365X(88)90232-4, Discrete Math. 72 (1988), 395-404. (1988) Zbl0685.05036MR0975562DOI10.1016/0012-365X(88)90232-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.