Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus; Peer Kunstmann; Nikolaos Pattakos

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 3, page 709-742
  • ISSN: 0011-4642

Abstract

top
We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.

How to cite

top

Klaus, Friedrich, Kunstmann, Peer, and Pattakos, Nikolaos. "Unconditional uniqueness of higher order nonlinear Schrödinger equations." Czechoslovak Mathematical Journal 71.3 (2021): 709-742. <http://eudml.org/doc/298054>.

@article{Klaus2021,
abstract = {We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_\{0\}\in X$, where $X\in \lbrace M_\{2,q\}^\{s\}(\mathbb \{R\}), H^\{\sigma \}(\mathbb \{T\}), H^\{s_\{1\}\}(\mathbb \{R\})+H^\{s_\{2\}\}(\mathbb \{T\})\rbrace $ and $q\in [1,2]$, $s\ge 0$, or $\sigma \ge 0$, or $s_\{2\}\ge s_\{1\}\ge 0$. Moreover, if $M_\{2,q\}^\{s\}(\mathbb \{R\})\hookrightarrow L^\{3\}(\mathbb \{R\})$, or if $\sigma \ge \frac\{1\}\{6\}$, or if $s_\{1\}\ge \frac\{1\}\{6\}$ and $s_\{2\}>\frac\{1\}\{2\}$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.},
author = {Klaus, Friedrich, Kunstmann, Peer, Pattakos, Nikolaos},
journal = {Czechoslovak Mathematical Journal},
keywords = {normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger},
language = {eng},
number = {3},
pages = {709-742},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unconditional uniqueness of higher order nonlinear Schrödinger equations},
url = {http://eudml.org/doc/298054},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Klaus, Friedrich
AU - Kunstmann, Peer
AU - Pattakos, Nikolaos
TI - Unconditional uniqueness of higher order nonlinear Schrödinger equations
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 709
EP - 742
AB - We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_{0}\in X$, where $X\in \lbrace M_{2,q}^{s}(\mathbb {R}), H^{\sigma }(\mathbb {T}), H^{s_{1}}(\mathbb {R})+H^{s_{2}}(\mathbb {T})\rbrace $ and $q\in [1,2]$, $s\ge 0$, or $\sigma \ge 0$, or $s_{2}\ge s_{1}\ge 0$. Moreover, if $M_{2,q}^{s}(\mathbb {R})\hookrightarrow L^{3}(\mathbb {R})$, or if $\sigma \ge \frac{1}{6}$, or if $s_{1}\ge \frac{1}{6}$ and $s_{2}>\frac{1}{2}$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
LA - eng
KW - normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
UR - http://eudml.org/doc/298054
ER -

References

top
  1. Babin, A. V., Ilyin, A. A., Titi, E. S., 10.1002/cpa.20356, Commun. Pure Appl. Math. 64 (2011), 591-648. (2011) Zbl1284.35365MR2789490DOI10.1002/cpa.20356
  2. Ben-Artzi, M., Koch, H., Saut, J.-C., 10.1016/S0764-4442(00)00120-8, C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 87-92. (2000) Zbl0942.35160MR1745182DOI10.1016/S0764-4442(00)00120-8
  3. Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G., 10.1016/j.jfa.2006.12.019, J. Funct. Anal. 246 (2007), 366-384. (2007) Zbl1120.42010MR2321047DOI10.1016/j.jfa.2006.12.019
  4. Boulenger, T., Lenzmann, E., 10.24033/asens.2326, Ann. Scient. Éc. Norm. Supér. (4) 50 (2017), 503-544. (2017) Zbl1375.35476MR3665549DOI10.24033/asens.2326
  5. Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N., 10.1137/19M1249679, SIAM J. Math. Anal. 51 (2019), 3714-3749. (2019) Zbl1428.35492MR4002719DOI10.1137/19M1249679
  6. Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N., 10.1007/s00028-019-00501-z, J. Evol. Equ. 19 (2019), 803-843. (2019) Zbl1428.35493MR3997245DOI10.1007/s00028-019-00501-z
  7. Chaichenets, L., Pattakos, N., 10.1017/S0017089519000491, Glasg. Math. J. 63 (2021), 45-53. (2021) Zbl07286310MR4190068DOI10.1017/S0017089519000491
  8. Choffrut, A., Pocovnicu, O., 10.1093/imrn/rnw246, Int. Math. Res. Not. 2018 (2018), 699-738. (2018) Zbl1406.35461MR3801444DOI10.1093/imrn/rnw246
  9. Chowdury, A., Kedziora, D. J., Ankiewicz, A., Akhmediev, N., 10.1103/PhysRevE.90.032922, Phys. Rev. E 90 (2014), Article ID 032922. (2014) DOI10.1103/PhysRevE.90.032922
  10. Christ, M., Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, Available at https://arxiv.org/abs/math/0503366 (2005), 13 pages. (2005) 
  11. Christ, M., 10.1515/9781400827794.131, Mathematical Aspects of Nonlinear Dispersive Equations Annals of Mathematics Studies 163. Princeton University Press, Princeton (2007), 131-155. (2007) Zbl1142.35084MR2333210DOI10.1515/9781400827794.131
  12. Colliander, J., Oh, T., 10.1215/00127094-1507400, Duke Math. J. 161 (2012), 367-414. (2012) Zbl1260.35199MR2881226DOI10.1215/00127094-1507400
  13. Feichtinger, H. G., Modulation spaces on locally compact abelian groups, Proceedings of International Conference on Wavelets and Applications 2002 New Delhi Allied Publishers, Delhi (2003), 99-140. (2003) 
  14. Fibich, G., Ilan, B., Papanicolaou, G., 10.1137/S0036139901387241, SIAM J. Appl. Math. 62 (2002), 1437-1462. (2002) Zbl1003.35112MR1898529DOI10.1137/S0036139901387241
  15. Gubinelli, M., 10.3934/cpaa.2012.11.709, Commun. Pure Appl. Anal. 11 (2012), 709-733. (2012) Zbl1278.35213MR2861805DOI10.3934/cpaa.2012.11.709
  16. Guo, S., 10.1007/s00041-016-9464-z, J. Fourier Anal. Appl. 23 (2017), 91-124. (2017) Zbl1361.35165MR3602811DOI10.1007/s00041-016-9464-z
  17. Guo, Z., Kwon, S., Oh, T., 10.1007/s00220-013-1755-5, Commun. Math. Phys. 322 (2013), 19-48. (2013) Zbl1308.35270MR3073156DOI10.1007/s00220-013-1755-5
  18. Guo, Z., Oh, T., 3801473, Int. Math. Res. Not. 2018 (2018), 1656-1729. (2018) Zbl1410.35199MR3801473DOI3801473
  19. Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Clarendon Press, New York (1979). (1979) Zbl0423.10001MR0568909
  20. Herr, S., Sohinger, V., 10.1142/S021919971850058X, Commun. Contemp. Math. 21 (2019), Article ID 1850058, 33 pages. (2019) Zbl1428.35516MR4017783DOI10.1142/S021919971850058X
  21. Kang, Z.-Z., Xia, T.-C., Ma, W.-X., 10.1186/s13662-019-2121-5, Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages. (2019) Zbl07057006MR3950782DOI10.1186/s13662-019-2121-5
  22. Karpman, V. I., 10.1103/PhysRevE.53.R1336, Phys. Rev. E 53 (1996), 1336-1339. (1996) MR1372681DOI10.1103/PhysRevE.53.R1336
  23. Karpman, V. I., Shagalov, A. G., 10.1016/S0167-2789(00)00078-6, Physica D 144 (2000), 194-210. (2000) Zbl0962.35165MR1779828DOI10.1016/S0167-2789(00)00078-6
  24. Kato, T., 10.1007/BF02787794, J. Anal. Math. 67 (1995), 281-306. (1995) Zbl0848.35124MR1383498DOI10.1007/BF02787794
  25. Kishimoto, N., Unconditional uniqueness of solutions for nonlinear dispersive equations, Available at https://arxiv.org/abs/1911.04349 (2019), 48 pages. (2019) 
  26. Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N., 10.1090/S0002-9939-09-09968-7, Proc. Am. Math. Soc. 137 (2009), 3869-3883. (2009) Zbl1183.42013MR2529896DOI10.1090/S0002-9939-09-09968-7
  27. Oh, T., Tzvetkov, N., 10.1007/s00440-016-0748-7, Probab. Theory Relat. Fields 169 (2017), 1121-1168. (2017) Zbl1382.35274MR3719064DOI10.1007/s00440-016-0748-7
  28. Oh, T., Wang, Y., 10.1017/fms.2018.4, Forum Math. Sigma 6 (2018), Article ID e5, 80 pages. (2018) Zbl1431.35178MR3800620DOI10.1017/fms.2018.4
  29. Oh, T., Wang, Y., On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53-84. (2018) Zbl1438.35397MR3896809
  30. Pattakos, N., 10.1007/s00041-018-09655-9, J. Fourier Anal. Appl. 25 (2019), 1447-1486. (2019) Zbl1420.35372MR3977124DOI10.1007/s00041-018-09655-9
  31. Pausader, B., 10.1016/j.jfa.2008.11.009, J. Func. Anal. 256 (2009), 2473-2517. (2009) Zbl1171.35115MR2502523DOI10.1016/j.jfa.2008.11.009
  32. Pausader, B., Shao, S., 10.1142/S0219891610002256, J. Hyperbolic Differ. Equ. 7 (2010), 651-705. (2010) Zbl1232.35156MR2746203DOI10.1142/S0219891610002256
  33. Sedletsky, Y. V., Gandzha, I. S., 10.1007/s11071-018-4465-x, Nonlinear Dyn. 94 (2018), 1921-1932. (2018) DOI10.1007/s11071-018-4465-x
  34. Vargas, A., Vega, L., 10.1016/S0021-7824(01)01224-7, J. Math. Pures Appl., IX. Sér. 80 (2001), 1029-1044. (2001) Zbl1027.35134MR1876762DOI10.1016/S0021-7824(01)01224-7
  35. Wang, B., Hudzik, H., 10.1016/j.jde.2006.09.004, J. Differ. Equations 232 (2007), 36-73. (2007) Zbl1121.35132MR2281189DOI10.1016/j.jde.2006.09.004
  36. Yue, Y., Huang, L., Chen, Y., 10.1016/j.cnsns.2020.105284, Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages. (2020) Zbl1454.35358MR4099385DOI10.1016/j.cnsns.2020.105284

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.