Unconditional uniqueness of higher order nonlinear Schrödinger equations
Friedrich Klaus; Peer Kunstmann; Nikolaos Pattakos
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 709-742
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKlaus, Friedrich, Kunstmann, Peer, and Pattakos, Nikolaos. "Unconditional uniqueness of higher order nonlinear Schrödinger equations." Czechoslovak Mathematical Journal 71.3 (2021): 709-742. <http://eudml.org/doc/298054>.
@article{Klaus2021,
abstract = {We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_\{0\}\in X$, where $X\in \lbrace M_\{2,q\}^\{s\}(\mathbb \{R\}), H^\{\sigma \}(\mathbb \{T\}), H^\{s_\{1\}\}(\mathbb \{R\})+H^\{s_\{2\}\}(\mathbb \{T\})\rbrace $ and $q\in [1,2]$, $s\ge 0$, or $\sigma \ge 0$, or $s_\{2\}\ge s_\{1\}\ge 0$. Moreover, if $M_\{2,q\}^\{s\}(\mathbb \{R\})\hookrightarrow L^\{3\}(\mathbb \{R\})$, or if $\sigma \ge \frac\{1\}\{6\}$, or if $s_\{1\}\ge \frac\{1\}\{6\}$ and $s_\{2\}>\frac\{1\}\{2\}$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.},
author = {Klaus, Friedrich, Kunstmann, Peer, Pattakos, Nikolaos},
journal = {Czechoslovak Mathematical Journal},
keywords = {normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger},
language = {eng},
number = {3},
pages = {709-742},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unconditional uniqueness of higher order nonlinear Schrödinger equations},
url = {http://eudml.org/doc/298054},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Klaus, Friedrich
AU - Kunstmann, Peer
AU - Pattakos, Nikolaos
TI - Unconditional uniqueness of higher order nonlinear Schrödinger equations
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 709
EP - 742
AB - We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_{0}\in X$, where $X\in \lbrace M_{2,q}^{s}(\mathbb {R}), H^{\sigma }(\mathbb {T}), H^{s_{1}}(\mathbb {R})+H^{s_{2}}(\mathbb {T})\rbrace $ and $q\in [1,2]$, $s\ge 0$, or $\sigma \ge 0$, or $s_{2}\ge s_{1}\ge 0$. Moreover, if $M_{2,q}^{s}(\mathbb {R})\hookrightarrow L^{3}(\mathbb {R})$, or if $\sigma \ge \frac{1}{6}$, or if $s_{1}\ge \frac{1}{6}$ and $s_{2}>\frac{1}{2}$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
LA - eng
KW - normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
UR - http://eudml.org/doc/298054
ER -
References
top- Babin, A. V., Ilyin, A. A., Titi, E. S., 10.1002/cpa.20356, Commun. Pure Appl. Math. 64 (2011), 591-648. (2011) Zbl1284.35365MR2789490DOI10.1002/cpa.20356
- Ben-Artzi, M., Koch, H., Saut, J.-C., 10.1016/S0764-4442(00)00120-8, C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 87-92. (2000) Zbl0942.35160MR1745182DOI10.1016/S0764-4442(00)00120-8
- Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G., 10.1016/j.jfa.2006.12.019, J. Funct. Anal. 246 (2007), 366-384. (2007) Zbl1120.42010MR2321047DOI10.1016/j.jfa.2006.12.019
- Boulenger, T., Lenzmann, E., 10.24033/asens.2326, Ann. Scient. Éc. Norm. Supér. (4) 50 (2017), 503-544. (2017) Zbl1375.35476MR3665549DOI10.24033/asens.2326
- Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N., 10.1137/19M1249679, SIAM J. Math. Anal. 51 (2019), 3714-3749. (2019) Zbl1428.35492MR4002719DOI10.1137/19M1249679
- Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N., 10.1007/s00028-019-00501-z, J. Evol. Equ. 19 (2019), 803-843. (2019) Zbl1428.35493MR3997245DOI10.1007/s00028-019-00501-z
- Chaichenets, L., Pattakos, N., 10.1017/S0017089519000491, Glasg. Math. J. 63 (2021), 45-53. (2021) Zbl07286310MR4190068DOI10.1017/S0017089519000491
- Choffrut, A., Pocovnicu, O., 10.1093/imrn/rnw246, Int. Math. Res. Not. 2018 (2018), 699-738. (2018) Zbl1406.35461MR3801444DOI10.1093/imrn/rnw246
- Chowdury, A., Kedziora, D. J., Ankiewicz, A., Akhmediev, N., 10.1103/PhysRevE.90.032922, Phys. Rev. E 90 (2014), Article ID 032922. (2014) DOI10.1103/PhysRevE.90.032922
- Christ, M., Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, Available at https://arxiv.org/abs/math/0503366 (2005), 13 pages. (2005)
- Christ, M., 10.1515/9781400827794.131, Mathematical Aspects of Nonlinear Dispersive Equations Annals of Mathematics Studies 163. Princeton University Press, Princeton (2007), 131-155. (2007) Zbl1142.35084MR2333210DOI10.1515/9781400827794.131
- Colliander, J., Oh, T., 10.1215/00127094-1507400, Duke Math. J. 161 (2012), 367-414. (2012) Zbl1260.35199MR2881226DOI10.1215/00127094-1507400
- Feichtinger, H. G., Modulation spaces on locally compact abelian groups, Proceedings of International Conference on Wavelets and Applications 2002 New Delhi Allied Publishers, Delhi (2003), 99-140. (2003)
- Fibich, G., Ilan, B., Papanicolaou, G., 10.1137/S0036139901387241, SIAM J. Appl. Math. 62 (2002), 1437-1462. (2002) Zbl1003.35112MR1898529DOI10.1137/S0036139901387241
- Gubinelli, M., 10.3934/cpaa.2012.11.709, Commun. Pure Appl. Anal. 11 (2012), 709-733. (2012) Zbl1278.35213MR2861805DOI10.3934/cpaa.2012.11.709
- Guo, S., 10.1007/s00041-016-9464-z, J. Fourier Anal. Appl. 23 (2017), 91-124. (2017) Zbl1361.35165MR3602811DOI10.1007/s00041-016-9464-z
- Guo, Z., Kwon, S., Oh, T., 10.1007/s00220-013-1755-5, Commun. Math. Phys. 322 (2013), 19-48. (2013) Zbl1308.35270MR3073156DOI10.1007/s00220-013-1755-5
- Guo, Z., Oh, T., 3801473, Int. Math. Res. Not. 2018 (2018), 1656-1729. (2018) Zbl1410.35199MR3801473DOI3801473
- Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Clarendon Press, New York (1979). (1979) Zbl0423.10001MR0568909
- Herr, S., Sohinger, V., 10.1142/S021919971850058X, Commun. Contemp. Math. 21 (2019), Article ID 1850058, 33 pages. (2019) Zbl1428.35516MR4017783DOI10.1142/S021919971850058X
- Kang, Z.-Z., Xia, T.-C., Ma, W.-X., 10.1186/s13662-019-2121-5, Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages. (2019) Zbl07057006MR3950782DOI10.1186/s13662-019-2121-5
- Karpman, V. I., 10.1103/PhysRevE.53.R1336, Phys. Rev. E 53 (1996), 1336-1339. (1996) MR1372681DOI10.1103/PhysRevE.53.R1336
- Karpman, V. I., Shagalov, A. G., 10.1016/S0167-2789(00)00078-6, Physica D 144 (2000), 194-210. (2000) Zbl0962.35165MR1779828DOI10.1016/S0167-2789(00)00078-6
- Kato, T., 10.1007/BF02787794, J. Anal. Math. 67 (1995), 281-306. (1995) Zbl0848.35124MR1383498DOI10.1007/BF02787794
- Kishimoto, N., Unconditional uniqueness of solutions for nonlinear dispersive equations, Available at https://arxiv.org/abs/1911.04349 (2019), 48 pages. (2019)
- Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N., 10.1090/S0002-9939-09-09968-7, Proc. Am. Math. Soc. 137 (2009), 3869-3883. (2009) Zbl1183.42013MR2529896DOI10.1090/S0002-9939-09-09968-7
- Oh, T., Tzvetkov, N., 10.1007/s00440-016-0748-7, Probab. Theory Relat. Fields 169 (2017), 1121-1168. (2017) Zbl1382.35274MR3719064DOI10.1007/s00440-016-0748-7
- Oh, T., Wang, Y., 10.1017/fms.2018.4, Forum Math. Sigma 6 (2018), Article ID e5, 80 pages. (2018) Zbl1431.35178MR3800620DOI10.1017/fms.2018.4
- Oh, T., Wang, Y., On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53-84. (2018) Zbl1438.35397MR3896809
- Pattakos, N., 10.1007/s00041-018-09655-9, J. Fourier Anal. Appl. 25 (2019), 1447-1486. (2019) Zbl1420.35372MR3977124DOI10.1007/s00041-018-09655-9
- Pausader, B., 10.1016/j.jfa.2008.11.009, J. Func. Anal. 256 (2009), 2473-2517. (2009) Zbl1171.35115MR2502523DOI10.1016/j.jfa.2008.11.009
- Pausader, B., Shao, S., 10.1142/S0219891610002256, J. Hyperbolic Differ. Equ. 7 (2010), 651-705. (2010) Zbl1232.35156MR2746203DOI10.1142/S0219891610002256
- Sedletsky, Y. V., Gandzha, I. S., 10.1007/s11071-018-4465-x, Nonlinear Dyn. 94 (2018), 1921-1932. (2018) DOI10.1007/s11071-018-4465-x
- Vargas, A., Vega, L., 10.1016/S0021-7824(01)01224-7, J. Math. Pures Appl., IX. Sér. 80 (2001), 1029-1044. (2001) Zbl1027.35134MR1876762DOI10.1016/S0021-7824(01)01224-7
- Wang, B., Hudzik, H., 10.1016/j.jde.2006.09.004, J. Differ. Equations 232 (2007), 36-73. (2007) Zbl1121.35132MR2281189DOI10.1016/j.jde.2006.09.004
- Yue, Y., Huang, L., Chen, Y., 10.1016/j.cnsns.2020.105284, Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages. (2020) Zbl1454.35358MR4099385DOI10.1016/j.cnsns.2020.105284
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.