Involutivity degree of a distribution at superdensity points of its tangencies
Archivum Mathematicum (2021)
- Volume: 057, Issue: 4, page 195-219
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDelladio, Silvano. "Involutivity degree of a distribution at superdensity points of its tangencies." Archivum Mathematicum 057.4 (2021): 195-219. <http://eudml.org/doc/298062>.
@article{Delladio2021,
abstract = {Let $\Phi _1,\ldots ,\Phi _\{k+1\}$ (with $k\ge 1$) be vector fields of class $C^k$ in an open set $U\subset ^\{N+m\}$, let $\mathbb \{M\}$ be a $N$-dimensional $C^k$ submanifold of $U$ and define \[ \mathbb \{T\}:=\lbrace z\in \mathbb \{M\}: \Phi \_1(z), \ldots , \Phi \_\{k+1\}(z) \in T\_z \mathbb \{M\}\rbrace \]
where $T_z \mathbb \{M\}$ is the tangent space to $\mathbb \{M\}$ at $z$. Then we expect the following property, which is obvious in the special case when $z_0$ is an interior point (relative to $\mathbb \{M\}$) of $\mathbb \{T\}$: If $z_0\in \mathbb \{M\}$ is a $(N+k)$-density point (relative to $\mathbb \{M\}$) of $\mathbb \{T\}$ then all the iterated Lie brackets of order less or equal to $k$\[ \Phi \_\{i\_1\}(z\_0),\, [\Phi \_\{i\_1\}, \Phi \_\{i\_2\}](z\_0), \, [[\Phi \_\{i\_1\}, \Phi \_\{i\_2\}], \Phi \_\{i\_3\}](z\_0),\, \ldots \qquad (h, i\_h\le k+1) \]
belong to $T_\{z_0\}\mathbb \{M\}$. Such a property has been proved in [9] for $k=1$ and its proof in the case $k=2$ is the main purpose of the present paper. The following corollary follows at once: Let $\mathbb \{D\}$ be a $C^2$ distribution of rank $N$ on an open set $U\subset ^\{N+m\}$ and $\mathbb \{M\}$ be a $N$-dimensional $C^2$ submanifold of $U$. Moreover let $z_0\in \mathbb \{M\}$ be a $(N+2)$-density point of the tangency set $\lbrace z\in \mathbb \{M\}\,\vert \, T_z\mathbb \{M\}=\mathbb \{D\}(z)\rbrace $. Then $\mathbb \{D\}$ must be $2$-involutive at $z_0$, i.e., for every family $\lbrace X_j\rbrace _\{j=1\}^N$ of class $C^2$ in a neighborhood $V\subset U$ of $z_0$ which generates $\mathbb \{D\}$ one has \[ X\_\{i\_1\} (z\_0), [X\_\{i\_1\},X\_\{i\_2\}](z\_0), [[X\_\{i\_1\},X\_\{i\_2\}],X\_\{i\_3\}](z\_0)\in T\_\{z\_0\}\mathbb \{M\}\]
for all $1\le i_1, i_2, i_3\le N$.},
author = {Delladio, Silvano},
journal = {Archivum Mathematicum},
keywords = {tangency set; distributions; superdensity; integral manifold; Frobenius theorem},
language = {eng},
number = {4},
pages = {195-219},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Involutivity degree of a distribution at superdensity points of its tangencies},
url = {http://eudml.org/doc/298062},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Delladio, Silvano
TI - Involutivity degree of a distribution at superdensity points of its tangencies
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 4
SP - 195
EP - 219
AB - Let $\Phi _1,\ldots ,\Phi _{k+1}$ (with $k\ge 1$) be vector fields of class $C^k$ in an open set $U\subset ^{N+m}$, let $\mathbb {M}$ be a $N$-dimensional $C^k$ submanifold of $U$ and define \[ \mathbb {T}:=\lbrace z\in \mathbb {M}: \Phi _1(z), \ldots , \Phi _{k+1}(z) \in T_z \mathbb {M}\rbrace \]
where $T_z \mathbb {M}$ is the tangent space to $\mathbb {M}$ at $z$. Then we expect the following property, which is obvious in the special case when $z_0$ is an interior point (relative to $\mathbb {M}$) of $\mathbb {T}$: If $z_0\in \mathbb {M}$ is a $(N+k)$-density point (relative to $\mathbb {M}$) of $\mathbb {T}$ then all the iterated Lie brackets of order less or equal to $k$\[ \Phi _{i_1}(z_0),\, [\Phi _{i_1}, \Phi _{i_2}](z_0), \, [[\Phi _{i_1}, \Phi _{i_2}], \Phi _{i_3}](z_0),\, \ldots \qquad (h, i_h\le k+1) \]
belong to $T_{z_0}\mathbb {M}$. Such a property has been proved in [9] for $k=1$ and its proof in the case $k=2$ is the main purpose of the present paper. The following corollary follows at once: Let $\mathbb {D}$ be a $C^2$ distribution of rank $N$ on an open set $U\subset ^{N+m}$ and $\mathbb {M}$ be a $N$-dimensional $C^2$ submanifold of $U$. Moreover let $z_0\in \mathbb {M}$ be a $(N+2)$-density point of the tangency set $\lbrace z\in \mathbb {M}\,\vert \, T_z\mathbb {M}=\mathbb {D}(z)\rbrace $. Then $\mathbb {D}$ must be $2$-involutive at $z_0$, i.e., for every family $\lbrace X_j\rbrace _{j=1}^N$ of class $C^2$ in a neighborhood $V\subset U$ of $z_0$ which generates $\mathbb {D}$ one has \[ X_{i_1} (z_0), [X_{i_1},X_{i_2}](z_0), [[X_{i_1},X_{i_2}],X_{i_3}](z_0)\in T_{z_0}\mathbb {M}\]
for all $1\le i_1, i_2, i_3\le N$.
LA - eng
KW - tangency set; distributions; superdensity; integral manifold; Frobenius theorem
UR - http://eudml.org/doc/298062
ER -
References
top- Balogh, Z.M., Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003), 63–83. (2003) MR2021034
- Balogh, Z.M., Pintea, C., Rohner, H., 10.1512/iumj.2011.60.4489, Indiana Univ. Math. J. 60 (6) (2011), 2061–2092. (2011) MR3008261DOI10.1512/iumj.2011.60.4489
- Chavel, I., Riemannian Geometry: A Modern Introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, 1995. (1995)
- Chern, S.S., Chen, W.H., Lam, K.S., Lectures on differential geometry, Series On University Mathematics, vol. 1, World Scientific, 1999. (1999)
- Delladio, S., 10.1002/mana.201600195, Math. Nachr. 290 (11–12) (2017), 1630–1636, DOI: 10.1002/mana.201600195. (2017) MR3683451DOI10.1002/mana.201600195
- Delladio, S., 10.4171/RMI/1028, Rev. Mat. Iberoam. 34 (3) (2018), 1387–1400. (2018) MR3850291DOI10.4171/RMI/1028
- Delladio, S., 10.1007/s10231-018-0793-1, Ann. Mat. Pura Appl. 198 (3) (2019), 685–691, DOI: 10.1007/s10231-018-0793-1. (2019) MR3954388DOI10.1007/s10231-018-0793-1
- Delladio, S., 10.1512/iumj.2019.68.7549, Indiana Univ. Math. J. 68 (2) (2019), 393–412. (2019) MR3951069DOI10.1512/iumj.2019.68.7549
- Delladio, S., 10.1007/s10476-020-0063-5, Anal. Math. 47 (1) (2021), 67–80. (2021) MR4218579DOI10.1007/s10476-020-0063-5
- Derridj, M., 10.5802/aif.413, Ann. Inst. Fourier (Grenoble) 22 (2) (1972), 73–83. (1972) DOI10.5802/aif.413
- Federer, H., Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801
- Narasimhan, R., Analysis on real and complex manifolds, North-Holland Math. Library, North-Holland, 1985. (1985)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.