Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 111-124
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Donghan. "Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles." Czechoslovak Mathematical Journal 72.1 (2022): 111-124. <http://eudml.org/doc/298063>.
@article{Zhang2022,
abstract = {Let $G=(V(G),E(G))$ be a simple graph and $E_\{G\}(v)$ denote the set of edges incident with a vertex $v$. A neighbor sum distinguishing (NSD) total coloring $\phi $ of $G$ is a proper total coloring of $G$ such that $\sum _\{z\in E_\{G\}(u)\cup \lbrace u\rbrace \}\phi (z)\ne \sum _\{z\in E_\{G\}(v)\cup \lbrace v\rbrace \}\phi (z)$ for each edge $uv\in E(G)$. Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree $\Delta $ admits an NSD total $(\Delta +3)$-coloring. We prove that the list version of this conjecture holds for any IC-planar graph with $\Delta \ge 11$ but without $5$-cycles by applying the Combinatorial Nullstellensatz.},
author = {Zhang, Donghan},
journal = {Czechoslovak Mathematical Journal},
keywords = {IC-planar graph; neighbor sum distinguishing list total coloring; Combinatorial Nullstellensatz; discharging method},
language = {eng},
number = {1},
pages = {111-124},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles},
url = {http://eudml.org/doc/298063},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Zhang, Donghan
TI - Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 111
EP - 124
AB - Let $G=(V(G),E(G))$ be a simple graph and $E_{G}(v)$ denote the set of edges incident with a vertex $v$. A neighbor sum distinguishing (NSD) total coloring $\phi $ of $G$ is a proper total coloring of $G$ such that $\sum _{z\in E_{G}(u)\cup \lbrace u\rbrace }\phi (z)\ne \sum _{z\in E_{G}(v)\cup \lbrace v\rbrace }\phi (z)$ for each edge $uv\in E(G)$. Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree $\Delta $ admits an NSD total $(\Delta +3)$-coloring. We prove that the list version of this conjecture holds for any IC-planar graph with $\Delta \ge 11$ but without $5$-cycles by applying the Combinatorial Nullstellensatz.
LA - eng
KW - IC-planar graph; neighbor sum distinguishing list total coloring; Combinatorial Nullstellensatz; discharging method
UR - http://eudml.org/doc/298063
ER -
References
top- Albertson, M. O., 10.26493/1855-3974.10.2d0, Ars Math. Contemp. 1 (2008), 1-6. (2008) Zbl1181.05032MR2434266DOI10.26493/1855-3974.10.2d0
- Alon, N., 10.1017/S0963548398003411, Comb. Probab. Comput. 8 (1999), 7-29. (1999) Zbl0920.05026MR1684621DOI10.1017/S0963548398003411
- Bondy, J. A., Murty, U. S. R., 10.1007/978-1-84628-970-5, Graduate Texts in Mathematics 244. Springer, Berlin (2008). (2008) Zbl1134.05001MR2368647DOI10.1007/978-1-84628-970-5
- Pilśniak, M., Woźniak, M., 10.1007/s00373-013-1399-4, Graphs Comb. 31 (2015), 771-782. (2015) Zbl1312.05054MR3338032DOI10.1007/s00373-013-1399-4
- Qu, C., Wang, G., Yan, G., Yu, X., 10.1007/s10878-015-9911-9, J. Comb. Optim. 32 (2016), 906-916. (2016) Zbl1348.05082MR3544074DOI10.1007/s10878-015-9911-9
- Song, C., Jin, X., Xu, C., 10.1016/j.dam.2019.12.023, Discrete Appl. Math. 279 (2020), 202-209. (2020) Zbl1439.05095MR4092640DOI10.1016/j.dam.2019.12.023
- Song, C., Xu, C., 10.1007/s10878-019-00467-1, J. Comb. Optim. 39 (2020), 293-303. (2020) Zbl1434.05057MR4047108DOI10.1007/s10878-019-00467-1
- Song, W., Duan, Y., Miao, L., 10.1007/s10114-020-9189-4, Acta Math. Sin., Engl. Ser. 36 (2020), 292-304. (2020) Zbl1439.05096MR4072704DOI10.1007/s10114-020-9189-4
- Song, W., Miao, L., Duan, Y., 10.7151/dmgt.2145, Discuss. Math., Graph Theory 40 (2020), 331-344. (2020) Zbl1430.05023MR4041985DOI10.7151/dmgt.2145
- Wang, J., Cai, J., Qiu, B., 10.1016/j.tcs.2016.11.003, Theor. Comput. Sci. 661 (2017), 1-7. (2017) Zbl1357.05027MR3591208DOI10.1016/j.tcs.2016.11.003
- Yang, D., Sun, L., Yu, X., Wu, J., Zhou, S., 10.1016/j.amc.2017.06.002, Appl. Math. Comput. 314 (2017), 456-468. (2017) Zbl1426.05051MR3683886DOI10.1016/j.amc.2017.06.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.