A new approach to Hom-left-symmetric bialgebras
Qinxiu Sun; Qiong Lou; Hongliang Li
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 321-333
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSun, Qinxiu, Lou, Qiong, and Li, Hongliang. "A new approach to Hom-left-symmetric bialgebras." Czechoslovak Mathematical Journal 71.2 (2021): 321-333. <http://eudml.org/doc/298071>.
@article{Sun2021,
abstract = {The main purpose of this paper is to consider a new definition of Hom-left-symmetric bialgebra. The coboundary Hom-left-symmetric bialgebra is also studied. In particular, we give a necessary and sufficient condition that $s$-matrix is a solution of the Hom-$S$-equation by a cocycle condition.},
author = {Sun, Qinxiu, Lou, Qiong, Li, Hongliang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hom-left-symmetric algebra; Hom-$S$-equation; Hom-left-symmetric bialgebra},
language = {eng},
number = {2},
pages = {321-333},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new approach to Hom-left-symmetric bialgebras},
url = {http://eudml.org/doc/298071},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Sun, Qinxiu
AU - Lou, Qiong
AU - Li, Hongliang
TI - A new approach to Hom-left-symmetric bialgebras
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 321
EP - 333
AB - The main purpose of this paper is to consider a new definition of Hom-left-symmetric bialgebra. The coboundary Hom-left-symmetric bialgebra is also studied. In particular, we give a necessary and sufficient condition that $s$-matrix is a solution of the Hom-$S$-equation by a cocycle condition.
LA - eng
KW - Hom-left-symmetric algebra; Hom-$S$-equation; Hom-left-symmetric bialgebra
UR - http://eudml.org/doc/298071
ER -
References
top- Bai, C., 10.1142/S0219199708002752, Commun. Contemp. Math. 10 (2008), 221-260. (2008) Zbl1173.17025MR2409367DOI10.1142/S0219199708002752
- Benayadi, S., Makhlouf, A., 10.1016/j.geomphys.2013.10.010, J. Geom. Phys. 76 (2014), 38-60. (2014) Zbl1331.17028MR3144357DOI10.1016/j.geomphys.2013.10.010
- Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
- Liu, S., Song, L., Tang, R., Representations and cohomologies of Hom-pre-Lie algebras, Available at https://arxiv.org/abs/1902.07360v1 (2019), 18 pages. (2019)
- Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
- Sheng, Y., Bai, C., 10.1016/j.jalgebra.2013.08.046, J. Algebra 399 (2014), 232-250. (2014) Zbl1345.17002MR3144586DOI10.1016/j.jalgebra.2013.08.046
- Sheng, Y., Chen, D., 10.1016/j.jalgebra.2012.11.032, J. Algebra 376 (2013), 174-195. (2013) Zbl1281.17034MR3003723DOI10.1016/j.jalgebra.2012.11.032
- Sun, Q., Li, H., 10.1080/00927872.2016.1175453, Commun. Algebra 45 (2017), 105-120. (2017) Zbl1418.17068MR3556559DOI10.1080/00927872.2016.1175453
- Yau, D., 10.1088/1751-8113/42/16/165202, J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. (2009) Zbl1179.17001MR2539278DOI10.1088/1751-8113/42/16/165202
- Yau, D., 10.1088/1751-8113/44/8/085202, J. Phys. A, Math. Theor. 44 (2011), Article ID 085202, 20 pages. (2011) Zbl1208.81110MR2770370DOI10.1088/1751-8113/44/8/085202
- Yau, D., 10.1063/1.3571970, J. Math. Phys. 52 (2011), Article ID 053502, 19 pages. (2011) Zbl1317.16032MR2839083DOI10.1063/1.3571970
- Yau, D., 10.24330/ieja.266210, Int. Electron. J. Algebra 17 (2015), 11-45. (2015) Zbl1323.16027MR3310684DOI10.24330/ieja.266210
- Zhang, R., Hou, D., Bai, C., 10.1063/1.3546025, J. Math. Phys. 52 (2011), Article ID 023505, 19 pages. (2011) Zbl1314.17007MR2798403DOI10.1063/1.3546025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.