A new approach to Hom-left-symmetric bialgebras

Qinxiu Sun; Qiong Lou; Hongliang Li

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 321-333
  • ISSN: 0011-4642

Abstract

top
The main purpose of this paper is to consider a new definition of Hom-left-symmetric bialgebra. The coboundary Hom-left-symmetric bialgebra is also studied. In particular, we give a necessary and sufficient condition that s -matrix is a solution of the Hom- S -equation by a cocycle condition.

How to cite

top

Sun, Qinxiu, Lou, Qiong, and Li, Hongliang. "A new approach to Hom-left-symmetric bialgebras." Czechoslovak Mathematical Journal 71.2 (2021): 321-333. <http://eudml.org/doc/298071>.

@article{Sun2021,
abstract = {The main purpose of this paper is to consider a new definition of Hom-left-symmetric bialgebra. The coboundary Hom-left-symmetric bialgebra is also studied. In particular, we give a necessary and sufficient condition that $s$-matrix is a solution of the Hom-$S$-equation by a cocycle condition.},
author = {Sun, Qinxiu, Lou, Qiong, Li, Hongliang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hom-left-symmetric algebra; Hom-$S$-equation; Hom-left-symmetric bialgebra},
language = {eng},
number = {2},
pages = {321-333},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new approach to Hom-left-symmetric bialgebras},
url = {http://eudml.org/doc/298071},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Sun, Qinxiu
AU - Lou, Qiong
AU - Li, Hongliang
TI - A new approach to Hom-left-symmetric bialgebras
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 321
EP - 333
AB - The main purpose of this paper is to consider a new definition of Hom-left-symmetric bialgebra. The coboundary Hom-left-symmetric bialgebra is also studied. In particular, we give a necessary and sufficient condition that $s$-matrix is a solution of the Hom-$S$-equation by a cocycle condition.
LA - eng
KW - Hom-left-symmetric algebra; Hom-$S$-equation; Hom-left-symmetric bialgebra
UR - http://eudml.org/doc/298071
ER -

References

top
  1. Bai, C., 10.1142/S0219199708002752, Commun. Contemp. Math. 10 (2008), 221-260. (2008) Zbl1173.17025MR2409367DOI10.1142/S0219199708002752
  2. Benayadi, S., Makhlouf, A., 10.1016/j.geomphys.2013.10.010, J. Geom. Phys. 76 (2014), 38-60. (2014) Zbl1331.17028MR3144357DOI10.1016/j.geomphys.2013.10.010
  3. Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
  4. Liu, S., Song, L., Tang, R., Representations and cohomologies of Hom-pre-Lie algebras, Available at https://arxiv.org/abs/1902.07360v1 (2019), 18 pages. (2019) 
  5. Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
  6. Sheng, Y., Bai, C., 10.1016/j.jalgebra.2013.08.046, J. Algebra 399 (2014), 232-250. (2014) Zbl1345.17002MR3144586DOI10.1016/j.jalgebra.2013.08.046
  7. Sheng, Y., Chen, D., 10.1016/j.jalgebra.2012.11.032, J. Algebra 376 (2013), 174-195. (2013) Zbl1281.17034MR3003723DOI10.1016/j.jalgebra.2012.11.032
  8. Sun, Q., Li, H., 10.1080/00927872.2016.1175453, Commun. Algebra 45 (2017), 105-120. (2017) Zbl1418.17068MR3556559DOI10.1080/00927872.2016.1175453
  9. Yau, D., 10.1088/1751-8113/42/16/165202, J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. (2009) Zbl1179.17001MR2539278DOI10.1088/1751-8113/42/16/165202
  10. Yau, D., 10.1088/1751-8113/44/8/085202, J. Phys. A, Math. Theor. 44 (2011), Article ID 085202, 20 pages. (2011) Zbl1208.81110MR2770370DOI10.1088/1751-8113/44/8/085202
  11. Yau, D., 10.1063/1.3571970, J. Math. Phys. 52 (2011), Article ID 053502, 19 pages. (2011) Zbl1317.16032MR2839083DOI10.1063/1.3571970
  12. Yau, D., 10.24330/ieja.266210, Int. Electron. J. Algebra 17 (2015), 11-45. (2015) Zbl1323.16027MR3310684DOI10.24330/ieja.266210
  13. Zhang, R., Hou, D., Bai, C., 10.1063/1.3546025, J. Math. Phys. 52 (2011), Article ID 023505, 19 pages. (2011) Zbl1314.17007MR2798403DOI10.1063/1.3546025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.