Initial Maclaurin coefficient estimates for λ -pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions

Abbas Kareem Wanas; Basem Aref Frasin

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 2, page 201-210
  • ISSN: 0862-7959

Abstract

top
We introduce and study two certain classes of holomorphic and bi-univalent functions associating λ -pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor–Maclaurin coefficients | a 2 | and | a 3 | for functions belonging to these classes. Further we point out certain special cases for our results.

How to cite

top

Wanas, Abbas Kareem, and Frasin, Basem Aref. "Initial Maclaurin coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions." Mathematica Bohemica 147.2 (2022): 201-210. <http://eudml.org/doc/298142>.

@article{Wanas2022,
abstract = {We introduce and study two certain classes of holomorphic and bi-univalent functions associating $\lambda $-pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor–Maclaurin coefficients $\vert a_\{2\}\vert $ and $\vert a_\{3\}\vert $ for functions belonging to these classes. Further we point out certain special cases for our results.},
author = {Wanas, Abbas Kareem, Frasin, Basem Aref},
journal = {Mathematica Bohemica},
keywords = {holomorphic function; bi-univalent function; coefficient estimates; $\lambda $-pseudo-starlike function; Sakaguchi-type function},
language = {eng},
number = {2},
pages = {201-210},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Initial Maclaurin coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions},
url = {http://eudml.org/doc/298142},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Wanas, Abbas Kareem
AU - Frasin, Basem Aref
TI - Initial Maclaurin coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 201
EP - 210
AB - We introduce and study two certain classes of holomorphic and bi-univalent functions associating $\lambda $-pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor–Maclaurin coefficients $\vert a_{2}\vert $ and $\vert a_{3}\vert $ for functions belonging to these classes. Further we point out certain special cases for our results.
LA - eng
KW - holomorphic function; bi-univalent function; coefficient estimates; $\lambda $-pseudo-starlike function; Sakaguchi-type function
UR - http://eudml.org/doc/298142
ER -

References

top
  1. Adegani, E. A., Bulut, S., Zireh, A., 10.4134/BKMS.b170051, Bull. Korean Math. Soc. 55 (2018), 405-413. (2018) Zbl1393.30010MR3789451DOI10.4134/BKMS.b170051
  2. Babalola, K. O., 10.7153/jca-03-12, J. Class. Anal. 3 (2013), 137-147. (2013) Zbl1412.30026MR3322264DOI10.7153/jca-03-12
  3. Brannan, D. A., Taha, T. S., On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math. 31 (1986), 70-77. (1986) Zbl0614.30017MR0911858
  4. Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). (1983) Zbl0514.30001MR0708494
  5. Frasin, B. A., Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci. 10 (2010), 206-211. (2010) Zbl1216.30008MR2745244
  6. Frasin, B. A., 10.15672/hjms.2015449084, Hacet. J. Math. Stat. 43 (2014), 383-389. (2014) Zbl1307.30023MR3241315DOI10.15672/hjms.2015449084
  7. Frasin, B. A., Aouf, M. K., 10.1016/j.aml.2011.03.048, Appl. Math. Lett. 24 (2011), 1569-1573. (2011) Zbl1218.30024MR2803711DOI10.1016/j.aml.2011.03.048
  8. Joshi, S., Joshi, S., Pawar, H., 10.1016/j.joems.2016.03.007, J. Egypt. Math. Soc. 24 (2016), 522-525. (2016) Zbl1352.30009MR3553869DOI10.1016/j.joems.2016.03.007
  9. Li, X.-F., Wang, A.-P., Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (2012), 1495-1504. (2012) Zbl1263.30006MR2967369
  10. Magesh, N., Bulut, S., 10.1007/s13370-017-0535-3, Afr. Mat. 29 (2018), 203-209. (2018) Zbl1399.30052MR3761423DOI10.1007/s13370-017-0535-3
  11. Mazi, E. P., Opoola, T. O., On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions, Gen. Math. 25 (2017), 85-95. (2017) 
  12. Murugusundaramoorthy, G., Magesh, N., Prameela, V., 10.1155/2013/573017, Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages. (2013) Zbl1292.30005MR3064526DOI10.1155/2013/573017
  13. Owa, S., Sekine, T., Yamakawa, R., 10.1016/j.amc.2006.08.133, Appl. Math. Comput. 187 (2007), 356-361. (2007) Zbl1113.30018MR2323589DOI10.1016/j.amc.2006.08.133
  14. Sakaguchi, K., 10.2969/jmsj/01110072, J. Math. Soc. Japan 11 (1959), 72-75. (1959) Zbl0085.29602MR0107005DOI10.2969/jmsj/01110072
  15. Şeker, B., 10.3906/mat-1507-100, Turk. J. Math. 42 (2018), 2891-2896. (2018) Zbl1424.30073MR3885420DOI10.3906/mat-1507-100
  16. Srivastava, H. M., Altınkaya, Ş., Yalçın, S., 10.1007/s40995-018-0647-0, Iran. J. Sci. Technol., Trans. A, Sci. 43 (2019), 1873-1879. (2019) MR3978601DOI10.1007/s40995-018-0647-0
  17. Srivastava, H. M., Bansal, D., 10.1016/j.joems.2014.04.002, J. Egypt. Math. Soc. 23 (2015), 242-246. (2015) Zbl1326.30019MR3355409DOI10.1016/j.joems.2014.04.002
  18. Srivastava, H. M., Eker, S. S., Ali, R. M., 10.2298/FIL1508839S, Filomat 29 (2015), 1839-1845. (2015) Zbl06749151MR3403901DOI10.2298/FIL1508839S
  19. Srivastava, H. M., Gaboury, S., Ghanim, F., 10.1007/s13370-016-0478-0, Afr. Math. 28 (2017), 693-706. (2017) Zbl1370.30009MR3687384DOI10.1007/s13370-016-0478-0
  20. Srivastava, H. M., Mishra, A. K., Gochhayat, P., 10.1016/j.aml.2010.05.009, Appl. Math. Lett. 23 (2010), 1188-1192. (2010) Zbl1201.30020MR2665593DOI10.1016/j.aml.2010.05.009
  21. Srivastava, H. M., Wanas, A. K., 10.1134/S0965542519030060, Kyungpook Math. J. 59 (2019), 493-503. (2019) Zbl1435.30064MR4020441DOI10.1134/S0965542519030060
  22. Wanas, A. K., Alina, A. L., 10.1088/1742-6596/1294/3/032003, J. Phys., Conf. Ser. 1294 (2019), Article ID 032003, 6 pages. (2019) DOI10.1088/1742-6596/1294/3/032003
  23. Wanas, A. K., Majeed, A. H., Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points, Appl. Math. E-Notes 19 (2019), 14-21. (2019) Zbl1427.30035MR3947083
  24. Wanas, A. K., Yalçın, S., 10.26637/MJM0703/0018, Malaya J. Mat. 7 (2019), 472-476. (2019) MR3987769DOI10.26637/MJM0703/0018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.