Displaying similar documents to “Initial Maclaurin coefficient estimates for λ -pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions”

Region of variability for functions with positive real part

Saminathan Ponnusamy, Allu Vasudevarao (2010)

Annales Polonici Mathematici

Similarity:

For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let γ , β denote the class of all analytic functions P in the unit disk with P(0) = 1 and R e ( e i γ P ( z ) ) > β c o s γ in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability V ( z , λ ) for 0 z P ( ζ ) d ζ when P ranges over the class ( λ ) = P γ , β : P ' ( 0 ) = 2 ( 1 - β ) λ e - i γ c o s γ . As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.

Generalized problem of starlikeness for products of close-to-star functions

Jacek Dziok (2013)

Annales Polonici Mathematici

Similarity:

We consider functions of the type F ( z ) = z j = 1 n [ f j ( z ) / z ] a j , where a j are real numbers and f j are β j -strongly close-to-starlike functions of order α j . We look for conditions on the center and radius of the disk (a,r) = z:|z-a| < r, |a| < r ≤ 1 - |a|, ensuring that F((a,r)) is a domain starlike with respect to the origin.

Sakaguchi type functions defined by balancing polynomials

Gunasekar Saravanan, Sudharsanan Baskaran, Balasubramaniam Vanithakumari, Serap Bulut (2025)

Mathematica Bohemica

Similarity:

The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients | a 2 | and | a 3 | have also been estimated.

Some properties for α -starlike functions with respect to k -symmetric points of complex order

H. E. Darwish, A. Y. Lashin, S. M. Sowileh (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In the present work, we introduce the subclass 𝒯 γ , α k ( ϕ ) , of starlike functions with respect to k -symmetric points of complex order γ ( γ 0 ) in the open unit disc . Some interesting subordination criteria, inclusion relations and the integral representation for functions belonging to this class are provided. The results obtained generalize some known results, and some other new results are obtained.

Sharp estimation of the coefficients of bounded univalent functions close to identity

Lucjan Siewierski

Similarity:

CONTENTSIntroduction...............................................................................................................................................................................5Definitions and notation.........................................................................................................................................................7The main result........................................................................................................................................................................91....

Convolution conditions for bounded α -starlike functions of complex order

A. Y. Lashin (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let A be the class of analytic functions in the unit disc U of the complex plane with the normalization f ( 0 ) = f ' ( 0 ) - 1 = 0 . We introduce a subclass S M * ( α , b ) of A , which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class S M * ( n , α , b ) ( n 0 ) related to S M * ( α , b ) is also considered under the same conditions. Among other things, we find convolution conditions for a function f A to belong to the class S M * ( α , b ) . Several properties of the class S M * ( n , α , b ) are investigated. ...

Properties of functions concerned with Caratheodory functions

Mamoru Nunokawa, Emel Yavuz Duman, Shigeyoshi Owa (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let 𝒫 n denote the class of analytic functions p ( z ) of the form p ( z ) = 1 + c n z n + c n + 1 z n + 1 + in the open unit disc 𝕌 . Applying the result by S. S. Miller and P. T. Mocanu (J. Math. Anal. Appl. 65 (1978), 289-305), some interesting properties for p ( z ) concerned with Caratheodory functions are discussed. Further, some corollaries of the results concerned with the result due to M. Obradovic and S. Owa (Math. Nachr. 140 (1989), 97-102) are shown.

An integral operator on the classes 𝒮 * ( α ) and 𝒞𝒱ℋ ( β )

Nicoleta Ularu, Nicoleta Breaz (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to study some properties related to convexity order and coefficients estimation for a general integral operator. We find the convexity order for this operator, using the analytic functions from the class of starlike functions of order α and from the class 𝒞𝒱ℋ ( β ) and also we estimate the first two coefficients for functions obtained by this operator applied on the class 𝒞𝒱ℋ ( β ) .

Injectivity of sections of convex harmonic mappings and convolution theorems

Liulan Li, Saminathan Ponnusamy (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider the class 0 of sense-preserving harmonic functions f = h + g ¯ defined in the unit disk | z | < 1 and normalized so that h ( 0 ) = 0 = h ' ( 0 ) - 1 and g ( 0 ) = 0 = g ' ( 0 ) , where h and g are analytic in the unit disk. In the first part of the article we present two classes 𝒫 H 0 ( α ) and 𝒢 H 0 ( β ) of functions from 0 and show that if f 𝒫 H 0 ( α ) and F 𝒢 H 0 ( β ) , then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections...

Intrinsic pseudo-volume forms for logarithmic pairs

Thomas Dedieu (2010)

Bulletin de la Société Mathématique de France

Similarity:

We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic K -correspondences. We define an intrinsic logarithmic pseudo-volume form Φ X , D for every pair ( X , D ) consisting of a complex manifold X and a normal crossing Weil divisor D on X , the positive part of which is reduced. We then prove that Φ X , D is generically non-degenerate when X is projective...

Some applications of subordination theorems associated with fractional q -calculus operator

Wafaa Y. Kota, Rabha Mohamed El-Ashwah (2023)

Mathematica Bohemica

Similarity:

Using the operator 𝔇 q , ϱ m ( λ , l ) , we introduce the subclasses 𝔜 q , ϱ * m ( l , λ , γ ) and 𝔎 q , ϱ * m ( l , λ , γ ) of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes.

A proof of the Livingston conjecture for the fourth and the fifth coefficient of concave univalent functions

Karl-Joachim Wirths (2004)

Annales Polonici Mathematici

Similarity:

Let D denote the open unit disc and f:D → ℂ̅ be meromorphic and injective in D. We further assume that f has a simple pole at the point p ∈ (0,1) and an expansion f ( z ) = z + n = 2 a ( f ) z , |z| < p. In particular, we consider f that map D onto a domain whose complement with respect to ℂ̅ is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted by Co(p). It is proved that for p ∈ (0,1) the domain of variability...

On the size of the sets of gradients of bump functions and starlike bodies on the Hilbert space

Daniel Azagra, Mar Jiménez-Sevilla (2002)

Bulletin de la Société Mathématique de France

Similarity:

We study the size of the sets of gradients of bump functions on the Hilbert space 2 , and the related question as to how small the set of tangent hyperplanes to a smooth bounded starlike body in 2 can be. We find that those sets can be quite small. On the one hand, the usual norm of the Hilbert space 2 can be uniformly approximated by C 1 smooth Lipschitz functions ψ so that the cones generated by the ranges of its derivatives ψ ' ( 2 ) have empty interior. This implies that there are C 1 smooth...

On certain general integral operators of analytic functions

B. A. Frasin (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper, we obtain new sufficient conditions for the operators F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) to be univalent in the open unit disc 𝒰 , where the functions f 1 , f 2 , . . . , f n belong to the classes S * ( a , b ) and 𝒦 ( a , b ) . The order of convexity for the operators  F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) is also determined. Furthermore, and for β = 1 , we obtain sufficient conditions for the operators F n ( z ) and G n ( z ) to be in the class 𝒦 ( a , b ) . Several corollaries and consequences of the main results are also considered.

Some subclasses of meromorphic and multivalent functions

Ding-Gong Yang, Jin-Lin Liu (2014)

Annales Polonici Mathematici

Similarity:

The authors introduce two new subclasses F p , k ( λ , A , B ) and G p , k ( λ , A , B ) of meromorphically multivalent functions. Distortion bounds and convolution properties for F p , k ( λ , A , B ) , G p , k ( λ , A , B ) and their subclasses with positive coefficients are obtained. Some inclusion relations for these function classes are also given.

On a question of Demailly-Peternell-Schneider

Meng Chen, Qi Zhang (2013)

Journal of the European Mathematical Society

Similarity:

We give an affirmative answer to an open question posed by Demailly-Peternell-Schneider in 2001 and recently by Peternell. Let f : X Y be a surjective morphism from a log canonical pair ( X , D ) onto a -Gorenstein variety Y . If - ( K X + D ) is nef, we show that K Y is pseudo-effective.

Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function

G. Murugusundaramoorthy, K. Uma (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by T S b μ ( α , β , γ ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class T S b μ ( α , β , γ ) . In particular, we obtain integral means inequalities for the function f ( z ) belongs to the class  T S b μ ( α , β , γ ) in the unit disc.

Convolution theorems for starlike and convex functions in the unit disc

M. Anbudurai, R. Parvatham, S. Ponnusamy, V. Singh (2004)

Annales Polonici Mathematici

Similarity:

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let P β = f A : R e f ' ( z ) > β , z Δ . For λ > 0, suppose that denotes any one of the following classes of functions: M 1 , λ ( 1 ) = f : R e z ( z f ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 2 ) = f : R e z ( z ² f ' ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 3 ) = f : R e 1 / 2 ( z ( z ² f ' ( z ) ) ' ' ) ' - 1 > - λ , z Δ . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ , γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain...

Subclasses of typically real functions determined by some modular inequalities

Leopold Koczan, Katarzyna Trąbka-Więcław (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ : = { z : | z | < 1 } , normalized by f ( 0 ) = f ' ( 0 ) - 1 = 0 and such that Im z Im f ( z ) 0 for z Δ . Moreover, let us denote: T ( 2 ) : = { f T : f ( z ) = - f ( - z ) for z Δ } and T M , g : = { f T : f M g in Δ } , where M > 1 , g T S and S consists of all analytic functions, normalized and univalent in Δ .We investigate  classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes { f T : f M g in Δ } , where M > 1 , g T , which we denote...