On the conjugate type vector and the structure of a normal subgroup
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 201-207
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Ruifang, and Guo, Lujun. "On the conjugate type vector and the structure of a normal subgroup." Czechoslovak Mathematical Journal 72.1 (2022): 201-207. <http://eudml.org/doc/298156>.
@article{Chen2022,
abstract = {Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_\{1n_1\}^\{a_\{1n_1\}\},\cdots , p_\{1 1\}^\{a_\{11\}\}, 1) \times \cdots \times (p_\{rn_r\}^\{a_\{rn_r\}\},\cdots , p_\{r1\}^\{a_\{r1\}\}, 1)$, where $r>1$, $n_i>1$ and $p_\{ij\}$ are distinct primes for $i\in \lbrace 1, 2, \cdots , r\rbrace $, $j\in \lbrace 1, 2, \cdots , n_i\rbrace $.},
author = {Chen, Ruifang, Guo, Lujun},
journal = {Czechoslovak Mathematical Journal},
keywords = {index; conjugacy class size; Baer group},
language = {eng},
number = {1},
pages = {201-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the conjugate type vector and the structure of a normal subgroup},
url = {http://eudml.org/doc/298156},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Chen, Ruifang
AU - Guo, Lujun
TI - On the conjugate type vector and the structure of a normal subgroup
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 201
EP - 207
AB - Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \lbrace 1, 2, \cdots , r\rbrace $, $j\in \lbrace 1, 2, \cdots , n_i\rbrace $.
LA - eng
KW - index; conjugacy class size; Baer group
UR - http://eudml.org/doc/298156
ER -
References
top- Akhlaghi, Z., Beltrán, A., Felipe, M. J., Khatami, M., 10.1016/j.jalgebra.2011.04.004, J. Algebra 336 (2011), 236-241. (2011) Zbl1241.20034MR2802540DOI10.1016/j.jalgebra.2011.04.004
- Baer, R., 10.1090/S0002-9947-1953-0055340-0, Trans. Am. Math. Soc. 75 (1953), 20-47. (1953) Zbl0051.25702MR55340DOI10.1090/S0002-9947-1953-0055340-0
- Beltrán, A., Felipe, M. J., 10.1081/AGB-120039627, Commun. Algebra 32 (2004), 3503-3516. (2004) Zbl1081.20040MR2097475DOI10.1081/AGB-120039627
- Bertram, E. A., Herzog, M., Mann, A., 10.1112/blms/22.6.569, Bull. London Math. Soc. 22 (1990), 569-575. (1990) Zbl0743.20017MR1099007DOI10.1112/blms/22.6.569
- Camina, A. R., 10.1112/jlms/s2-5.1.127, J. Lond. Math. Soc., II. Ser. 5 (1972), 127-132. (1972) Zbl0242.20025MR0294481DOI10.1112/jlms/s2-5.1.127
- Camina, A. R., 10.1017/S0027763000016019, Nagoya Math. J. 53 (1974), 47-57. (1974) Zbl0255.20014MR346054DOI10.1017/S0027763000016019
- Camina, A. R., Camina, R. D., 10.1515/jgth.1998.017, J. Group Theory 1 (1998), 257-269. (1998) Zbl0916.20015MR1633180DOI10.1515/jgth.1998.017
- Camina, A. R., Camina, R. D., 10.1006/jabr.2000.8535, J. Algebra 234 (2000), 604-608. (2000) Zbl0968.20017MR1800744DOI10.1006/jabr.2000.8535
- Itô, N., 10.1017/S0027763000016937, Nagoya Math. J. 6 (1953), 17-28. (1953) Zbl0053.01202MR61597DOI10.1017/S0027763000016937
- Kurzweil, H., Stellmacher, B., 10.1007/b97433, Universitext. Springer, New York (2004). (2004) Zbl1047.20011MR2014408DOI10.1007/b97433
- Zhao, X., Guo, X., 10.1007/s11401-008-0088-8, Chin. Ann. Math., Ser. B 30 (2009), 427-432. (2009) Zbl1213.20031MR2529448DOI10.1007/s11401-008-0088-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.