On the conjugate type vector and the structure of a normal subgroup

Ruifang Chen; Lujun Guo

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 201-207
  • ISSN: 0011-4642

Abstract

top
Let N be a normal subgroup of a group G . The structure of N is given when the G -conjugacy class sizes of N is a set of a special kind. In fact, we give the structure of a normal subgroup N under the assumption that the set of G -conjugacy class sizes of N is ( p 1 n 1 a 1 n 1 , , p 1 1 a 11 , 1 ) × × ( p r n r a r n r , , p r 1 a r 1 , 1 ) , where r > 1 , n i > 1 and p i j are distinct primes for i { 1 , 2 , , r } , j { 1 , 2 , , n i } .

How to cite

top

Chen, Ruifang, and Guo, Lujun. "On the conjugate type vector and the structure of a normal subgroup." Czechoslovak Mathematical Journal 72.1 (2022): 201-207. <http://eudml.org/doc/298156>.

@article{Chen2022,
abstract = {Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_\{1n_1\}^\{a_\{1n_1\}\},\cdots , p_\{1 1\}^\{a_\{11\}\}, 1) \times \cdots \times (p_\{rn_r\}^\{a_\{rn_r\}\},\cdots , p_\{r1\}^\{a_\{r1\}\}, 1)$, where $r>1$, $n_i>1$ and $p_\{ij\}$ are distinct primes for $i\in \lbrace 1, 2, \cdots , r\rbrace $, $j\in \lbrace 1, 2, \cdots , n_i\rbrace $.},
author = {Chen, Ruifang, Guo, Lujun},
journal = {Czechoslovak Mathematical Journal},
keywords = {index; conjugacy class size; Baer group},
language = {eng},
number = {1},
pages = {201-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the conjugate type vector and the structure of a normal subgroup},
url = {http://eudml.org/doc/298156},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Chen, Ruifang
AU - Guo, Lujun
TI - On the conjugate type vector and the structure of a normal subgroup
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 201
EP - 207
AB - Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \lbrace 1, 2, \cdots , r\rbrace $, $j\in \lbrace 1, 2, \cdots , n_i\rbrace $.
LA - eng
KW - index; conjugacy class size; Baer group
UR - http://eudml.org/doc/298156
ER -

References

top
  1. Akhlaghi, Z., Beltrán, A., Felipe, M. J., Khatami, M., 10.1016/j.jalgebra.2011.04.004, J. Algebra 336 (2011), 236-241. (2011) Zbl1241.20034MR2802540DOI10.1016/j.jalgebra.2011.04.004
  2. Baer, R., 10.1090/S0002-9947-1953-0055340-0, Trans. Am. Math. Soc. 75 (1953), 20-47. (1953) Zbl0051.25702MR55340DOI10.1090/S0002-9947-1953-0055340-0
  3. Beltrán, A., Felipe, M. J., 10.1081/AGB-120039627, Commun. Algebra 32 (2004), 3503-3516. (2004) Zbl1081.20040MR2097475DOI10.1081/AGB-120039627
  4. Bertram, E. A., Herzog, M., Mann, A., 10.1112/blms/22.6.569, Bull. London Math. Soc. 22 (1990), 569-575. (1990) Zbl0743.20017MR1099007DOI10.1112/blms/22.6.569
  5. Camina, A. R., 10.1112/jlms/s2-5.1.127, J. Lond. Math. Soc., II. Ser. 5 (1972), 127-132. (1972) Zbl0242.20025MR0294481DOI10.1112/jlms/s2-5.1.127
  6. Camina, A. R., 10.1017/S0027763000016019, Nagoya Math. J. 53 (1974), 47-57. (1974) Zbl0255.20014MR346054DOI10.1017/S0027763000016019
  7. Camina, A. R., Camina, R. D., 10.1515/jgth.1998.017, J. Group Theory 1 (1998), 257-269. (1998) Zbl0916.20015MR1633180DOI10.1515/jgth.1998.017
  8. Camina, A. R., Camina, R. D., 10.1006/jabr.2000.8535, J. Algebra 234 (2000), 604-608. (2000) Zbl0968.20017MR1800744DOI10.1006/jabr.2000.8535
  9. Itô, N., 10.1017/S0027763000016937, Nagoya Math. J. 6 (1953), 17-28. (1953) Zbl0053.01202MR61597DOI10.1017/S0027763000016937
  10. Kurzweil, H., Stellmacher, B., 10.1007/b97433, Universitext. Springer, New York (2004). (2004) Zbl1047.20011MR2014408DOI10.1007/b97433
  11. Zhao, X., Guo, X., 10.1007/s11401-008-0088-8, Chin. Ann. Math., Ser. B 30 (2009), 427-432. (2009) Zbl1213.20031MR2529448DOI10.1007/s11401-008-0088-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.