A Weighted Eigenvalue Problems Driven by both -Harmonic and -Biharmonic Operators
Mohamed Laghzal; Abdelouahed El Khalil; Abdelfattah Touzani
Communications in Mathematics (2021)
- Volume: 29, Issue: 3, page 443-455
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topLaghzal, Mohamed, Khalil, Abdelouahed El, and Touzani, Abdelfattah. "A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators." Communications in Mathematics 29.3 (2021): 443-455. <http://eudml.org/doc/298172>.
@article{Laghzal2021,
abstract = {The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin\{gather*\} \Delta \_\{p(x)\}^2 u-\Delta \_\{p(x)\}u=\lambda w(x)|u|^\{q(x)-2\}u \quad \text\{in \} \Omega ,\\ u\in W^\{2,p(\cdot )\}(\Omega )\cap W\_0^\{1,p(\cdot )\}(\Omega )\,, \end\{gather*\}
is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^\{p(\cdot )\}(\Omega )$ and $W^\{m,p(\cdot )\}(\Omega )$.},
author = {Laghzal, Mohamed, Khalil, Abdelouahed El, Touzani, Abdelfattah},
journal = {Communications in Mathematics},
keywords = {Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; $p(\cdot )$-biharmonic operator; $p(\cdot )$-harmonic operator; Variable exponent},
language = {eng},
number = {3},
pages = {443-455},
publisher = {University of Ostrava},
title = {A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators},
url = {http://eudml.org/doc/298172},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Laghzal, Mohamed
AU - Khalil, Abdelouahed El
AU - Touzani, Abdelfattah
TI - A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 443
EP - 455
AB - The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin{gather*} \Delta _{p(x)}^2 u-\Delta _{p(x)}u=\lambda w(x)|u|^{q(x)-2}u \quad \text{in } \Omega ,\\ u\in W^{2,p(\cdot )}(\Omega )\cap W_0^{1,p(\cdot )}(\Omega )\,, \end{gather*}
is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^{p(\cdot )}(\Omega )$ and $W^{m,p(\cdot )}(\Omega )$.
LA - eng
KW - Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; $p(\cdot )$-biharmonic operator; $p(\cdot )$-harmonic operator; Variable exponent
UR - http://eudml.org/doc/298172
ER -
References
top- Bui, T.A., 10.1515/anona-2016-0095, Advances in Nonlinear Analysis, 7, 4, 2018, 517-533, Walter de Gruyter Gmbh Genthiner Strasse 13, D-10785 Berlin, Germany, (2018) MR3871419DOI10.1515/anona-2016-0095
- Cencelj, M., Rădulescu, V.D., Repovš, D.D., 10.1016/j.na.2018.03.016, Nonlinear Analysis, 177, 2018, 270-287, Elsevier, (2018) MR3865198DOI10.1016/j.na.2018.03.016
- Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M., Lebesgue and Sobolev spaces with variable exponents, 2011, Lecture Notes in Mathematics, Springer, (2011) MR2790542
- Edmunds, D., Rákosník, J., 10.4064/sm-143-3-267-293, Studia Mathematica, 143, 3, 2000, 267-293, (2000) DOI10.4064/sm-143-3-267-293
- Khalil, A. El, Alaoui, M.D. Morchid, Touzani, A., On the Spectrum of problems involving both -Laplacian and -Biharmonic, Advances in Science, Technology and Engineering Systems Journal, 2, 5, 2017, 134-140, (2017)
- Fan, X., Han, X., Existence and multiplicity of solutions for -Laplacian equations in Dirichlet problem in , Nonlinear Analysis: Theory, Methods & Applications, 59, 1--2, 2004, 173-188, Elsevier, (2004) MR1954585
- Fan, X.L., Fan, X., 10.1016/S0022-247X(02)00376-1, Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, (2003) MR1989103DOI10.1016/S0022-247X(02)00376-1
- Fan, X.L., Fan, X., 10.1016/S0022-247X(02)00376-1, Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, (2003) MR1989103DOI10.1016/S0022-247X(02)00376-1
- Fan, X.L., Zhang, Q.H., Existence of solutions for -Laplacian Dirichlet problem, Nonlinear Analysis: Theory, Methods & Applications, 52, 8, 2003, 1843-1852, Elsevier, (2003) MR1954585
- Kefi, K., Rădulescu, V.D., On a -biharmonic problem with singular weights, Zeitschrift für angewandte Mathematik und Physik, 68, 80, 2017, 1-13, Springer, (2017) MR3667256
- Scapellato, A., Regularity of solutions to elliptic equations on Herz spaces with variable exponents, Boundary Value Problems, 2019, 1, 2019, 1-9, SpringerOpen, (2019) MR3895830
- Mihăilescu, M., Rădulescu, V., 10.1098/rspa.2005.1633, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2073, 2006, 2625-2641, The Royal Society London, (2006) MR2253555DOI10.1098/rspa.2005.1633
- Rădulescu, V.D., 10.1016/j.na.2014.11.007, Nonlinear Analysis: Theory, Methods & Applications, 121, 2015, 336-369, Elsevier, (2015) MR3348928DOI10.1016/j.na.2014.11.007
- Rădulescu, V.D., Isotropic and anisotropic double-phase problems: old and new, Opuscula Mathematica, 39, 2, 2019, 259-279, AGH University of Science and Technology Press, (2019) MR3897817
- Rădulescu, V.D., Repovš, D.D., Partial differential equations with variable exponents: variational methods and qualitative analysis, 9, 2015, Monographs and Research Notes in Mathematics, CRC press, (2015) MR3379920
- Růžička, M., Electrorheological fluids: modeling and mathematical theory, 2000, Lecture Notes in Mathematics, 1748, Springer Science & Business Media, (2000)
- Szulkin, A., Ljusternik-Schnirelmann theory on -manifolds, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 5, 2, 1988, 119-139, Elsevier, (1988)
- Zang, A., Fu, Y., 10.1016/j.na.2007.10.001, Nonlinear Analysis: Theory, Methods & Applications, 69, 10, 2008, 3629-3636, Elsevier, (2008) Zbl1153.26312MR2450565DOI10.1016/j.na.2007.10.001
- Zeidler, E., Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators, 1990, Springer, Translated from the German by the author and Leo F. Boron. (1990)
- Zhang, Q., Rădulescu, V.D., 10.1016/j.matpur.2018.06.015, Journal de Mathématiques Pures et Appliquées, 118, 2018, 159-203, Elsevier, (2018) MR3852472DOI10.1016/j.matpur.2018.06.015
- Zhikov, V.V., Averaging of functionals of the calculus of variations and elasticity theory (in Russian), Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 1986, 675-710, (1986)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.