A Weighted Eigenvalue Problems Driven by both p ( · ) -Harmonic and p ( · ) -Biharmonic Operators

Mohamed Laghzal; Abdelouahed El Khalil; Abdelfattah Touzani

Communications in Mathematics (2021)

  • Volume: 29, Issue: 3, page 443-455
  • ISSN: 1804-1388

Abstract

top
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p ( · ) -Harmonic and p ( · ) -biharmonic operators Δ p ( x ) 2 u - Δ p ( x ) u = λ w ( x ) | u | q ( x ) - 2 u in Ω , u W 2 , p ( · ) ( Ω ) W 0 1 , p ( · ) ( Ω ) , is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces L p ( · ) ( Ω ) and W m , p ( · ) ( Ω ) .

How to cite

top

Laghzal, Mohamed, Khalil, Abdelouahed El, and Touzani, Abdelfattah. "A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators." Communications in Mathematics 29.3 (2021): 443-455. <http://eudml.org/doc/298172>.

@article{Laghzal2021,
abstract = {The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin\{gather*\} \Delta \_\{p(x)\}^2 u-\Delta \_\{p(x)\}u=\lambda w(x)|u|^\{q(x)-2\}u \quad \text\{in \} \Omega ,\\ u\in W^\{2,p(\cdot )\}(\Omega )\cap W\_0^\{1,p(\cdot )\}(\Omega )\,, \end\{gather*\} is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^\{p(\cdot )\}(\Omega )$ and $W^\{m,p(\cdot )\}(\Omega )$.},
author = {Laghzal, Mohamed, Khalil, Abdelouahed El, Touzani, Abdelfattah},
journal = {Communications in Mathematics},
keywords = {Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; $p(\cdot )$-biharmonic operator; $p(\cdot )$-harmonic operator; Variable exponent},
language = {eng},
number = {3},
pages = {443-455},
publisher = {University of Ostrava},
title = {A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators},
url = {http://eudml.org/doc/298172},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Laghzal, Mohamed
AU - Khalil, Abdelouahed El
AU - Touzani, Abdelfattah
TI - A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 443
EP - 455
AB - The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin{gather*} \Delta _{p(x)}^2 u-\Delta _{p(x)}u=\lambda w(x)|u|^{q(x)-2}u \quad \text{in } \Omega ,\\ u\in W^{2,p(\cdot )}(\Omega )\cap W_0^{1,p(\cdot )}(\Omega )\,, \end{gather*} is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^{p(\cdot )}(\Omega )$ and $W^{m,p(\cdot )}(\Omega )$.
LA - eng
KW - Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; $p(\cdot )$-biharmonic operator; $p(\cdot )$-harmonic operator; Variable exponent
UR - http://eudml.org/doc/298172
ER -

References

top
  1. Bui, T.A., 10.1515/anona-2016-0095, Advances in Nonlinear Analysis, 7, 4, 2018, 517-533, Walter de Gruyter Gmbh Genthiner Strasse 13, D-10785 Berlin, Germany, (2018) MR3871419DOI10.1515/anona-2016-0095
  2. Cencelj, M., Rădulescu, V.D., Repovš, D.D., 10.1016/j.na.2018.03.016, Nonlinear Analysis, 177, 2018, 270-287, Elsevier, (2018) MR3865198DOI10.1016/j.na.2018.03.016
  3. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M., Lebesgue and Sobolev spaces with variable exponents, 2011, Lecture Notes in Mathematics, Springer, (2011) MR2790542
  4. Edmunds, D., Rákosník, J., 10.4064/sm-143-3-267-293, Studia Mathematica, 143, 3, 2000, 267-293, (2000) DOI10.4064/sm-143-3-267-293
  5. Khalil, A. El, Alaoui, M.D. Morchid, Touzani, A., On the Spectrum of problems involving both p ( x ) -Laplacian and P ( x ) -Biharmonic, Advances in Science, Technology and Engineering Systems Journal, 2, 5, 2017, 134-140, (2017) 
  6. Fan, X., Han, X., Existence and multiplicity of solutions for p ( x ) -Laplacian equations in Dirichlet problem in N , Nonlinear Analysis: Theory, Methods & Applications, 59, 1--2, 2004, 173-188, Elsevier, (2004) MR1954585
  7. Fan, X.L., Fan, X., 10.1016/S0022-247X(02)00376-1, Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, (2003) MR1989103DOI10.1016/S0022-247X(02)00376-1
  8. Fan, X.L., Fan, X., 10.1016/S0022-247X(02)00376-1, Journal of mathematical analysis and applications, 282, 2, 2003, 453-464, Academic Press, (2003) MR1989103DOI10.1016/S0022-247X(02)00376-1
  9. Fan, X.L., Zhang, Q.H., Existence of solutions for p ( x ) -Laplacian Dirichlet problem, Nonlinear Analysis: Theory, Methods & Applications, 52, 8, 2003, 1843-1852, Elsevier, (2003) MR1954585
  10. Kefi, K., Rădulescu, V.D., On a p ( x ) -biharmonic problem with singular weights, Zeitschrift für angewandte Mathematik und Physik, 68, 80, 2017, 1-13, Springer, (2017) MR3667256
  11. Scapellato, A., Regularity of solutions to elliptic equations on Herz spaces with variable exponents, Boundary Value Problems, 2019, 1, 2019, 1-9, SpringerOpen, (2019) MR3895830
  12. Mihăilescu, M., Rădulescu, V., 10.1098/rspa.2005.1633, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2073, 2006, 2625-2641, The Royal Society London, (2006) MR2253555DOI10.1098/rspa.2005.1633
  13. Rădulescu, V.D., 10.1016/j.na.2014.11.007, Nonlinear Analysis: Theory, Methods & Applications, 121, 2015, 336-369, Elsevier, (2015) MR3348928DOI10.1016/j.na.2014.11.007
  14. Rădulescu, V.D., Isotropic and anisotropic double-phase problems: old and new, Opuscula Mathematica, 39, 2, 2019, 259-279, AGH University of Science and Technology Press, (2019) MR3897817
  15. Rădulescu, V.D., Repovš, D.D., Partial differential equations with variable exponents: variational methods and qualitative analysis, 9, 2015, Monographs and Research Notes in Mathematics, CRC press, (2015) MR3379920
  16. Růžička, M., Electrorheological fluids: modeling and mathematical theory, 2000, Lecture Notes in Mathematics, 1748, Springer Science & Business Media, (2000) 
  17. Szulkin, A., Ljusternik-Schnirelmann theory on C 1 -manifolds, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 5, 2, 1988, 119-139, Elsevier, (1988) 
  18. Zang, A., Fu, Y., 10.1016/j.na.2007.10.001, Nonlinear Analysis: Theory, Methods & Applications, 69, 10, 2008, 3629-3636, Elsevier, (2008) Zbl1153.26312MR2450565DOI10.1016/j.na.2007.10.001
  19. Zeidler, E., Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators, 1990, Springer, Translated from the German by the author and Leo F. Boron. (1990) 
  20. Zhang, Q., Rădulescu, V.D., 10.1016/j.matpur.2018.06.015, Journal de Mathématiques Pures et Appliquées, 118, 2018, 159-203, Elsevier, (2018) MR3852472DOI10.1016/j.matpur.2018.06.015
  21. Zhikov, V.V., Averaging of functionals of the calculus of variations and elasticity theory (in Russian), Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 1986, 675-710, (1986) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.