Ljusternik-Schnirelmann theory on C 1 -manifolds

Andrzej Szulkin

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 2, page 119-139
  • ISSN: 0294-1449

How to cite

top

Szulkin, Andrzej. "Ljusternik-Schnirelmann theory on $C^1$-manifolds." Annales de l'I.H.P. Analyse non linéaire 5.2 (1988): 119-139. <http://eudml.org/doc/78147>.

@article{Szulkin1988,
author = {Szulkin, Andrzej},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lyusternik-Schnirelman theory; Palais-Smale condition; critical points; Ekeland's variational principle; eigenvalue problem; quasilinear differential equation; p-Laplacian},
language = {eng},
number = {2},
pages = {119-139},
publisher = {Gauthier-Villars},
title = {Ljusternik-Schnirelmann theory on $C^1$-manifolds},
url = {http://eudml.org/doc/78147},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Szulkin, Andrzej
TI - Ljusternik-Schnirelmann theory on $C^1$-manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 2
SP - 119
EP - 139
LA - eng
KW - Lyusternik-Schnirelman theory; Palais-Smale condition; critical points; Ekeland's variational principle; eigenvalue problem; quasilinear differential equation; p-Laplacian
UR - http://eudml.org/doc/78147
ER -

References

top
  1. [1] H. Amann, Lusternik-Schnirelman theory and non-linear eigenvalue problems, Math. Ann., Vol. 199, 1972, pp. 55-72. Zbl0233.47049MR350536
  2. [2] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. Zbl0641.47066MR749753
  3. [3] M.S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977. Zbl0368.47001MR488101
  4. [4] H. Brézis, J.M. Coron and L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 667-689. Zbl0484.35057MR586417
  5. [5] F.E. Browder, Existence theorems for nonlinear partial differential equations, Proc. Sym. Pure Math., Vol. 16, Amer. Math. Soc., Providence, R.I., 1970, pp. 1-60. Zbl0211.17204MR269962
  6. [6] F.E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., Vol. 9, 1983, pp. 1-39. Zbl0533.47053MR699315
  7. [7] A. Chabi and A. Haraux, Un théorème de valeurs intermédiaires dans les espaces de Sobolev et applications, Ann. Fac. Sci. Toulouse, Vol. 7, 1985, pp. 87-100. Zbl0557.35055MR842764
  8. [8] S.N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. Zbl0487.47039MR660633
  9. [9] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., Vol. 1, 1979, pp. 443-474. Zbl0441.49011MR526967
  10. [10] S. Fučik and J. Nečas, Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems, Math. Nachr., Vol. 53, 1972, pp. 277-289. Zbl0215.21202MR333863
  11. [11] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964. Zbl0111.30303
  12. [12] K. Kuratowski, Topologie I, P.W.N., Warsaw, 1958. 
  13. [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977. Zbl0362.46013MR500056
  14. [14] L. Ljusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels, Hermann, Paris, 1934. Zbl0011.02803JFM60.1228.04
  15. [15] R.S. Palais, Homotopy theory of infinite dimensional manifolds, Topology, Vol. 5, 1966, pp. 1-16. Zbl0138.18302MR189028
  16. [16] R.S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, Vol. 5, 1966, pp. 115-132. Zbl0143.35203MR259955
  17. [17] R.S. Palais, Critical point theory and the minimax principle, Proc. Sym. Pure Math., Vol. 15, Amer. Math. Soc., Providence, R.I., 1970, pp. 185-212. Zbl0212.28902MR264712
  18. [18] P.H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., Vol. 3, 1973, pp. 161-202. Zbl0255.47069MR320850
  19. [19] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S.65, Amer. Math. Soc., Providence, R.I., 1986. Zbl0609.58002MR845785
  20. [20] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 3, 1986, pp. 77-109. Zbl0612.58011MR837231
  21. [21] A. Szulkin, Critical point theory of Ljusternik-Schnirelmann type and applications to partial differential equations, Séminaire de Mathématiques Supérieures, Les Presses de l'Université de Montréal (to appear). Zbl0701.58016MR993077
  22. [22] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. Zbl0387.46032MR503903
  23. [23] E. Zeidler, Ljusternik-Schnirelman theory on general level sets, Math. Nachr., Vol. 129, 1986, pp. 235-259. Zbl0608.58014MR864637

Citations in EuDML Documents

top
  1. Yin Xi Huang, Eigenvalues of the p -Laplacian in 𝐑 N with indefinite weight
  2. Aomar Anane, Omar Chakrone, Jean-Pierre Gossez, Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires
  3. Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani, A Weighted Eigenvalue Problems Driven by both p ( · ) -Harmonic and p ( · ) -Biharmonic Operators
  4. Andrzej Szulkin, Michel Willem, Eigenvalue problems with indefinite weight
  5. Dumitru Motreanu, A saddle point approach to nonlinear eigenvalue problems
  6. Marco Degiovanni, Sergio Lancelotti, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity
  7. Antonio Ambrosetti, Critical points and nonlinear variational problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.