Ljusternik-Schnirelmann theory on -manifolds
Annales de l'I.H.P. Analyse non linéaire (1988)
- Volume: 5, Issue: 2, page 119-139
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSzulkin, Andrzej. "Ljusternik-Schnirelmann theory on $C^1$-manifolds." Annales de l'I.H.P. Analyse non linéaire 5.2 (1988): 119-139. <http://eudml.org/doc/78147>.
@article{Szulkin1988,
author = {Szulkin, Andrzej},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lyusternik-Schnirelman theory; Palais-Smale condition; critical points; Ekeland's variational principle; eigenvalue problem; quasilinear differential equation; p-Laplacian},
language = {eng},
number = {2},
pages = {119-139},
publisher = {Gauthier-Villars},
title = {Ljusternik-Schnirelmann theory on $C^1$-manifolds},
url = {http://eudml.org/doc/78147},
volume = {5},
year = {1988},
}
TY - JOUR
AU - Szulkin, Andrzej
TI - Ljusternik-Schnirelmann theory on $C^1$-manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 2
SP - 119
EP - 139
LA - eng
KW - Lyusternik-Schnirelman theory; Palais-Smale condition; critical points; Ekeland's variational principle; eigenvalue problem; quasilinear differential equation; p-Laplacian
UR - http://eudml.org/doc/78147
ER -
References
top- [1] H. Amann, Lusternik-Schnirelman theory and non-linear eigenvalue problems, Math. Ann., Vol. 199, 1972, pp. 55-72. Zbl0233.47049MR350536
- [2] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. Zbl0641.47066MR749753
- [3] M.S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977. Zbl0368.47001MR488101
- [4] H. Brézis, J.M. Coron and L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 667-689. Zbl0484.35057MR586417
- [5] F.E. Browder, Existence theorems for nonlinear partial differential equations, Proc. Sym. Pure Math., Vol. 16, Amer. Math. Soc., Providence, R.I., 1970, pp. 1-60. Zbl0211.17204MR269962
- [6] F.E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., Vol. 9, 1983, pp. 1-39. Zbl0533.47053MR699315
- [7] A. Chabi and A. Haraux, Un théorème de valeurs intermédiaires dans les espaces de Sobolev et applications, Ann. Fac. Sci. Toulouse, Vol. 7, 1985, pp. 87-100. Zbl0557.35055MR842764
- [8] S.N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. Zbl0487.47039MR660633
- [9] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., Vol. 1, 1979, pp. 443-474. Zbl0441.49011MR526967
- [10] S. Fučik and J. Nečas, Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems, Math. Nachr., Vol. 53, 1972, pp. 277-289. Zbl0215.21202MR333863
- [11] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964. Zbl0111.30303
- [12] K. Kuratowski, Topologie I, P.W.N., Warsaw, 1958.
- [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977. Zbl0362.46013MR500056
- [14] L. Ljusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels, Hermann, Paris, 1934. Zbl0011.02803JFM60.1228.04
- [15] R.S. Palais, Homotopy theory of infinite dimensional manifolds, Topology, Vol. 5, 1966, pp. 1-16. Zbl0138.18302MR189028
- [16] R.S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, Vol. 5, 1966, pp. 115-132. Zbl0143.35203MR259955
- [17] R.S. Palais, Critical point theory and the minimax principle, Proc. Sym. Pure Math., Vol. 15, Amer. Math. Soc., Providence, R.I., 1970, pp. 185-212. Zbl0212.28902MR264712
- [18] P.H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., Vol. 3, 1973, pp. 161-202. Zbl0255.47069MR320850
- [19] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S.65, Amer. Math. Soc., Providence, R.I., 1986. Zbl0609.58002MR845785
- [20] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 3, 1986, pp. 77-109. Zbl0612.58011MR837231
- [21] A. Szulkin, Critical point theory of Ljusternik-Schnirelmann type and applications to partial differential equations, Séminaire de Mathématiques Supérieures, Les Presses de l'Université de Montréal (to appear). Zbl0701.58016MR993077
- [22] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. Zbl0387.46032MR503903
- [23] E. Zeidler, Ljusternik-Schnirelman theory on general level sets, Math. Nachr., Vol. 129, 1986, pp. 235-259. Zbl0608.58014MR864637
Citations in EuDML Documents
top- Yin Xi Huang, Eigenvalues of the -Laplacian in with indefinite weight
- Aomar Anane, Omar Chakrone, Jean-Pierre Gossez, Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires
- Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani, A Weighted Eigenvalue Problems Driven by both -Harmonic and -Biharmonic Operators
- Andrzej Szulkin, Michel Willem, Eigenvalue problems with indefinite weight
- Dumitru Motreanu, A saddle point approach to nonlinear eigenvalue problems
- Marco Degiovanni, Sergio Lancelotti, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity
- Antonio Ambrosetti, Critical points and nonlinear variational problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.